DOI QR코드

DOI QR Code

Predicted functional analysis of rumen microbiota suggested the underlying mechanisms of the postpartum subacute ruminal acidosis in Holstein cows

  • Yoshiyuki Tsuchiya (Graduate School of Veterinary Sciences, Iwate University) ;
  • Ena Chiba (Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University) ;
  • Atsushi Kimura (Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University) ;
  • Kenji Kawashima (Chiba Prefectural Livestock Research Center) ;
  • Toshiya Hasunuma (Toyama Prefectural Agricultural, Forestry and Fisheries Research Center) ;
  • Shiro Kushibiki (Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization) ;
  • Yo-Han Kim (Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University) ;
  • Shigeru Sato (Graduate School of Veterinary Sciences, Iwate University)
  • Received : 2022.10.11
  • Accepted : 2023.02.14
  • Published : 2023.03.31

Abstract

Background: The relationships between the postpartum subacute ruminal acidosis (SARA) occurrence and predicted bacterial functions during the periparturient period are still not clear in Holstein cows. Objectives: The present study was performed to investigate the alterations of rumen fermentation, bacterial community structure, and predicted bacterial functional pathways in Holstein cows. Methods: Holstein cows were divided into the SARA (n = 6) or non-SARA (n = 4) groups, depending on whether they developed SARA during the first 2 weeks after parturition. Reticulo-ruminal pH was measured continuously during the study period. Reticulo-ruminal fluid samples were collected 3 weeks prepartum, and 2 and 6 weeks postpartum, and blood samples were collected 3 weeks before, 0, 2, 4 and 6 weeks postpartum. Results: The postpartum decline in 7-day mean reticulo-ruminal pH was more severe and longer-lasting in the SARA group compared with the non-SARA group. Changes in predicted functional pathways were identified in the SARA group. A significant upregulation of pathway "PWY-6383" associated with Mycobacteriaceae species was identified at 3 weeks after parturition in the SARA group. Significantly identified pathways involved in denitrification (DENITRIFICATION-PWY and PWY-7084), detoxification of reactive oxygen and nitrogen species (PWY1G-0), and starch degradation (PWY-622) in the SARA group were downregulated. Conclusions: The postpartum SARA occurrence is likely related to the predicted functions of rumen bacterial community rather than the alterations of rumen fermentation or fluid bacterial community structure. Therefore, our result suggests the underlying mechanisms, namely functional adaptation of bacterial community, causing postpartum SARA in Holstein cows during the periparturient period.

Keywords

Acknowledgement

This research was financially supported by a grant from the Ito Foundation, Japan.

References

  1. Gartner T, Gernand E, Gottschalk J, Donat K. Relationships between body condition, body condition loss, and serum metabolites during the transition period in primiparous and multiparous cows. J Dairy Sci. 2019;102(10):9187-9199.  https://doi.org/10.3168/jds.2018-15762
  2. Gozho GN, Plaizier JC, Krause DO, Kennedy AD, Wittenberg KM. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J Dairy Sci. 2005;88(4):1399-1403.  https://doi.org/10.3168/jds.S0022-0302(05)72807-1
  3. Zebeli Q, Ghareeb K, Humer E, Metzler-Zebeli BU, Besenfelder U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res Vet Sci. 2015;103:126-136. https://doi.org/10.1016/j.rvsc.2015.09.020
  4. Nagata R, Kim YH, Ohkubo A, Kushibiki S, Ichijo T, Sato S. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. J Dairy Sci. 2018;101(5):4424-4436.  https://doi.org/10.3168/jds.2017-13859
  5. Kim YH, Kimura A, Sugino T, Sato S. Parturition and postpartum dietary change altered ruminal pH and the predicted functions of rumen bacterial communities but did not alter the bacterial composition in Holstein cows. Front Vet Sci. 2022;9:948545. 
  6. Sato S, Mizuguchi H, Ito K, Ikuta K, Kimura A, Okada K. Technical note: development and testing of a radio transmission pH measurement system for continuous monitoring of ruminal pH in cows. Prev Vet Med. 2012;103(4):274-279.  https://doi.org/10.1016/j.prevetmed.2011.09.004
  7. Kim YH, Nagata R, Ohtani N, Ichijo T, Ikuta K, Sato S. Effects of dietary forage and calf starter diet on ruminal pH and bacteria in Holstein calves during weaning transition. Front Microbiol. 2016;7:1575. 
  8. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-7541.  https://doi.org/10.1128/AEM.01541-09
  9. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112-5120.  https://doi.org/10.1128/AEM.01043-13
  10. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188-7196.  https://doi.org/10.1093/nar/gkm864
  11. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685-688.  https://doi.org/10.1038/s41587-020-0548-6
  12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. 
  13. Aschenbach JR, Penner GB, Stumpff F, Gabel G. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J Anim Sci. 2011;89(4):1092-1107.  https://doi.org/10.2527/jas.2010-3301
  14. Watanabe Y, Kim YH, Kushibiki S, Ikuta K, Ichijo T, Sato S. Effects of active dried Saccharomyces cerevisiae on ruminal fermentation and bacterial community during the short-term ruminal acidosis challenge model in Holstein calves. J Dairy Sci. 2019;102(7):6518-6531.  https://doi.org/10.3168/jds.2018-15871
  15. Nagaraja TG, Titgemeyer EC. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci. 2007;90 Suppl 1:E17-E38.  https://doi.org/10.3168/jds.2006-478
  16. Allen MS. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci. 1997;80(7):1447-1462.  https://doi.org/10.3168/jds.S0022-0302(97)76074-0
  17. DeVries TJ, Beauchemin KA, Dohme F, Schwartzkopf-Genswein KS. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: feeding, ruminating, and lying behavior. J Dairy Sci. 2009;92(10):5067-5078.  https://doi.org/10.3168/jds.2009-2102
  18. Ogata T, Makino H, Ishizuka N, Iwamoto E, Masaki T, Kizaki K, et al. Long-term high-grain diet alters ruminal pH, fermentation, and epithelial transcriptomes, leading to restored mitochondrial oxidative phosphorylation in Japanese Black cattle. Sci Rep. 2020;10(1):6381. 
  19. Neubauer V, Petri R, Humer E, Kroger I, Mann E, Reisinger N, et al. High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. J Dairy Sci. 2018;101(3):2335-2349. https://doi.org/10.3168/jds.2017-13565
  20. Zhu Z, Noel SJ, Difford GF, Al-Soud WA, Brejnrod A, Sorensen SJ, et al. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period. PLoS One. 2017;12(11):e0187858. 
  21. Ogata T, Makino H, Ishizuka N, Iwamoto E, Masaki T, Ikuta K, et al. Long-term high-grain diet altered the ruminal pH, fermentation, and composition and functions of the rumen bacterial community, leading to enhanced lactic acid production in Japanese Black beef cattle during fattening. PLoS One. 2019;14(11):e0225448. 
  22. van Gylswyk NO. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int J Syst Bacteriol. 1995;45(2):297-300.  https://doi.org/10.1099/00207713-45-2-297
  23. Xin J, Chai Z, Zhang C, Zhang Q, Zhu Y, Cao H, et al. Comparing the microbial community in four stomach of dairy cattle, yellow cattle and three yak herds in Qinghai-Tibetan Plateau. Front Microbiol. 2019;10:1547. 
  24. Golder HM, Denman SE, McSweeney C, Celi P, Lean IJ. Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers. J Dairy Sci. 2014;97(8):5131-5150.  https://doi.org/10.3168/jds.2014-8003
  25. Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol. 2007;75(1):165-174.  https://doi.org/10.1007/s00253-006-0802-y
  26. Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, Coutinho PM, et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol. 2010;60(4):721-729.  https://doi.org/10.1007/s00248-010-9692-8
  27. Dieho K, van den Bogert B, Henderson G, Bannink A, Ramiro-Garcia J, Smidt H, et al. Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance. J Dairy Sci. 2017;100(4):2695-2710.  https://doi.org/10.3168/jds.2016-11982
  28. Kim M, Park T, Jeong JY, Baek Y, Lee HJ. Association between rumen microbiota and marbling score in Korean native beef cattle. Animals (Basel). 2020;10(4):712. 
  29. Park T, Ma L, Ma Y, Zhou X, Bu D, Yu Z. Dietary energy sources and levels shift the multi-kingdom microbiota and functions in the rumen of lactating dairy cows. J Anim Sci Biotechnol. 2020;11(1):66. 
  30. Crick DC, Mahapatra S, Brennan PJ. Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology. 2001;11(9):107R-118R.  https://doi.org/10.1093/glycob/11.9.107R
  31. Hand CE, Honek JF. Biological chemistry of naturally occurring thiols of microbial and marine origin. J Nat Prod. 2005;68(2):293-308.  https://doi.org/10.1021/np049685x
  32. Wang Y, Tang P, Xiao Y, Liu J, Chen Y, Yang Y. Alterations in rumen bacterial community and metabolome characteristics of cashmere goats in response to dietary nutrient density. Animals (Basel). 2020;10(7):1193.