과제정보
이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1C1C2004896).
참고문헌
- Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). "Segnet: A deep convolutional encoder-decoder architecture for image segmentation." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Bang, J., Choi, J.-Y., Yoon, P., Oh, C.-J., Maeng, S.-J., Bae, S.-J., Jang, M.-W., Jang, T., and Park, M.S. (2021). "Assessing irrigation water supply from agricultural reservoir using automatic water level data of irrigation canal." Journal of The Korean Society of Agricultural Engineers, Vol. 63, No. 1, pp. 27-35. https://doi.org/10.5389/KSAE.2021.63.1.027
- Chaudhary, P., D'Aronco, S., Moy de Virty, M., Leitao, J.P., and Wegner, J.D. (2019). "Flood-water level estimation from social media images." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5, pp. 5-12. doi: 10.5194.isprs-annals-IV-2-W5-5-2019. https://doi.org/10.5194.isprs-annals-IV-2-W5-5-2019
- Chen, L.C., Papandreou, G., Schroff, F., and Adam, H. (2017). "Rethinking atrous convolution for semantic image segmentation." arXiv Preprint arXiv,1706.05587. doi: 10.48550/arXiv.1706.05587.
- Creutin, J.D., Muste, M., Bradley, A.A., Kim, S.C., and Kruger, A. (2003). "River gauging using PIV techniques: A proof of concept experiment on the Iowa River." Journal of Hydrology, Vol. 277, No. 3-4, pp. 182-194. https://doi.org/10.1016/S0022-1694(03)00081-7
- Dal Sasso, S. F., Ljubicic, R., Pizarro, A., Pearce, S., Maddock, I., and Manfreda, S. (2023). "Image-based velocity estimations under different seeded and unseeded river flows." EGU General Assembly 2023, EGU, Vienna, Austria. doi: 10.5194/egusphereegu23-6936, 2023.
- Dhara, S., Dang, T., Parial, K., and Lu, X.X. (2020). "Accounting for uncertainty and reconstruction of flooding patterns based on multi-satellite imagery and support vector machine technique: A case study of Can Tho City, Vietnam." Water, Vol. 12, No. 6, 1543.
- He, K., Zhang, X., Ren, S., and Sun, J. (2016). "Deep residual learning for image recognition." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, NV, U.S.,pp. 770-778.
- Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.R. (2012). "Improving neural networks by preventing co-adaptation of feature detectors." arXiv Preprint arXiv,1207.0580.
- Hong, E.M., Nam, W.H., Choi, J.Y., and Kim, J.T. (2014). "Evaluation of water supply adequacy using real-time water level monitoring system in paddy irrigation canals." Journal of the Korean Society of Agricultural Engineers, Vol. 56, No. 4, pp. 1-8. https://doi.org/10.5389/KSAE.2014.56.4.001
- Jenks, G.F. (1967). "The data model concept in statistical mapping." International Yearbook of Cartography, Vol. 7, pp. 186-190.
- Kim, K.H., Kim, M.G., Yoon, P.R., Bang, J.H., Myoung, W.H., Choi, J.Y., and Choi, G.H. (2022). "Application of CCTV image and semantic segmentation model for water level estimation of irrigation channel." Journal of The Korean Society of Agricultural Engineers, Vol. 64, No. 3, pp. 63-73. https://doi.org/10.5389/KSAE.2022.64.3.063
- Kim, S.J., Kwon, H.J., Kim, J., and Kim, P.S. (2016). "Economical design of water level monitoring network for agricultural water quantification." Journal of The Korean Society of Agricultural Engineers, Vol. 58, No. 5, pp. 19-28. https://doi.org/10.5389/KSAE.2016.58.5.019
- Kingma, D.P., and Ba, J. (2014). "Adam: A method for stochastic optimization." arXiv Preprint arXiv, 1412.6980.
- Le Boursicaud, R., Penard, L., Hauet, A., Thollet, F., and Le Coz, J. (2016). "Gauging extreme floods on YouTube: Application of LSPIV to home movies for the post-event determination of stream discharges." Hydrological Processes, Vol. 30, No. 1, pp. 90-105. https://doi.org/10.1002/hyp.10532
- LeCun, Y., and Bengio, Y. (1995). "Convolutional networks for images, speech, and time series." The Handbook of Brain Theory and Neural Networks, Vol. 3361, No. 10, 1995.
- Lee, J., Noh, J., Kang, M., and Shin, H. (2020). "Evaluation of the irrigation water supply of agricultural reservoir based on measurement information from irrigation canal." Journal of The Korean Society of Agricultural Engineers, Vol. 62, No. 6, pp. 63-72. https://doi.org/10.5389/KSAE.2020.62.6.063
- Li, W., Liao, Q., and Ran, Q. (2019). "Stereo-imaging LSPIV (SILSPIV) for 3D water surface reconstruction and discharge measurement in mountain river flows." Journal of Hydrology, Vol. 578, 124099.
- Li, Z., Lu, C.Z., Qin, J., Guo, C.L., and Cheng, M.M. (2022). "Towards an end-to-end framework for flow-guided video inpainting." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, LA, U.S., pp. 17562-17571.
- Long, J., Shelhamer, E., and Darrell, T. (2015). "Fully convolutional networks for semantic segmentation." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, MA, U.S., pp. 3431-3440.
- Maehara, H., Nagase, M., and Taira, K. (2016). "Water level measurement from CCTV camera images using water gauge images taken at the time of low water level." Journal of the Japan Society of Photogrammetry and Remote Sensing, Vol. 55, No. 1, pp. 66-68 (in Japanese). doi: 10.4287/jsprs.55.66.
- Maehara, H., Nagase, M., Kuchi, M., Suzuki, T., and Taira, K. (2019). "A deep-learning based water-level measurement method from CCTV camera images." Journal of the Japan Society of Photogrammetry and Remote Sensing, Vol. 58, No. 1, pp. 28-33 (in Japanese). doi: 10.4287/jsprs.58.28.
- Ministry of Environment (ME) (2020) Korean climate change assessment report 2020 - Scientific evidence for climate change -. Korea Meteorological Administration.
- Ministry of Environment (ME) (2022) Drought information analysis annual report.
- Ministry of Land, Transport and Maritime Affairs (MLTMA) (2011) Improvement and supplement research of probability rainfall map.
- Muste, M., Ho, H.C., and Kim, D. (2011). "Considerations on direct stream flow measurements using video imagery: Outlook and research needs." Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 289-300. https://doi.org/10.1016/j.jher.2010.11.002
- Perks, M.T., Dal Sasso, S.F., Hauet, A., Jamieson, E., Le Coz, J., Pearce, S., Pena-Haro, S., Pizarro, A., Strelnikova, D., Tauro, F. and Bomhof, J. (2020). "Towards harmonisation of image velocimetry techniques for river surface velocity observations." Earth System Science Data, Vol. 12, No. 3, pp. 1545-1559. https://doi.org/10.5194/essd-12-1545-2020
- Pumo, D., Alongi, F., Ciraolo, G., and Noto, L.V. (2021). "Optical methods for river monitoring: A simulation-based approach to explore optimal experimental setup for LSPIV." Water, Vol. 13, No. 3, 247.
- Ronneberger, O., Fischer, P., and Brox, T. (2015). "U-net: Convolutional networks for biomedical image segmentation." In Proceedings of Medical Image Computing and Computer-Assisted Intervention, Springer International Publishing, Munich, Germany, pp. 234-241.
- Serte, S., Serener, A., and Al-Turjman, F. (2022). "Deep learning in medical imaging: A brief review." Transactions on Emerging Telecommunications Technologies, Vol. 33, No. 10, e4080.
- Simonyan, K., and Zisserman, A. (2014). "Very deep convolutional networks for large-scale image recognition." arXiv Preprint arXiv, 1409.1556.
- Szegedy, C., Reed, S., Erhan, D., Anguelov, D., and Ioffe, S. (2014). "Scalable, high-quality object detection." arXiv Preprint arXiv, 1412.1441.
- Tan, M., and Le, Q. (2019). "Efficientnet: Rethinking model scaling for convolutional neural networks." In International Conference on Machine Learning, PMLR, Long Beach, CA, U.S., pp. 6105-6114.
- Yang, M., Nam, W., Kim, H., Kim, T., Shin, A., Kang, M. (2021). "Anomaly detection in reservoir water level data using the LSTM model based on deep learning." Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 1, pp. 71-81. https://doi.org/10.9798/KOSHAM.2021.21.1.71