DOI QR코드

DOI QR Code

Developmental competence of chimeric porcine embryos through the aggregation of parthenogenetic embryos and somatic cell nuclear transfer embryos

  • Joohyeong Lee (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University) ;
  • Lian Cai (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University) ;
  • Mirae Kim (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University) ;
  • Hyerin Choi (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University) ;
  • Dongjin Oh (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University) ;
  • Ali Jawad (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University) ;
  • Eunsong Lee (College of Veterinary Medicine, Kangwon National University) ;
  • Sang-Hwan Hyun (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology, Chungbuk National University)
  • Received : 2023.01.07
  • Accepted : 2023.02.28
  • Published : 2023.03.31

Abstract

The efficiency of somatic cell nuclear transfer (NT) in pigs is low and requires enhancement. We identified the most efficient method for zona pellucida (ZP) removal and blastomere aggregation in pigs and investigated whether the aggregation of NT and parthenogenetic activation (PA) of blastomeres could reduce embryonic apoptosis and improve the quality of NT-derived embryos by investigating. Embryonic developmental competence after ZP removal using acid Tyrode's solution or protease (pronase E). The embryonic developmental potential of NT-derived blastomeres was also investigated using well-of-the-well or phytohemagglutinin-L. We analyzed apoptosis in aggregate-derived blastocysts. The aggregation rate of protease-treated embryos was lower than that of Tyrode's solution-treated embryos (69.2% vs. 88.3%). No significant difference was observed between phytohemagglutinin-L and well-of-the-well (35.7%-38.5%). However, 2P1N showed a higher number of blastocysts compared to 3N (73.8% vs. 24.3%) and an increased blastocyst diameter compared to the control and 1P2N (274 ㎛ vs. 230-234 ㎛). In blastomeres aggregated using phytohemagglutinin-L, the apoptotic cell ratio was significantly higher in 1P2N and 3N than in 3P (5.91%-6.46% vs. 2.94%, respectively). Our results indicate that aggregation of one NT embryo with two PA embryos improved the rate of blastocysts with increased blastocyst diameter.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2021R1C1C2013954). The authors are very grateful to Suin Lee and Eunjeong Kim for their support with several techniques, including ovary sampling.

References

  1. Isom SC, Li RF, Whitworth KM, Prather RS. Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis. Mol Reprod Dev 2012;79:197-207. https://doi.org/10.1002/mrd.22013
  2. Zhou Q, Yang SH, Ding CH, He XC, Xie YH, Hildebrandt TB, Mitalipov SM, Tang XH, Wolf DP, Ji WZ. A comparative approach to somatic cell nuclear transfer in the rhesus monkey. Hum Reprod 2006;21:2564-2571. https://doi.org/10.1093/humrep/del216
  3. Malin K, Witkowska-Pilaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022;189:246-254. https://doi.org/10.1016/j.theriogenology.2022.06.030
  4. Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond B Biol Sci 2015;370:20140366.
  5. Akagi S, Matsukawa K, Takahashi S. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle. J Reprod Dev 2014;60:329-335. https://doi.org/10.1262/jrd.2014-057
  6. Dinnyes A, Tian XC, Yang X. Epigenetic regulation of foetal development in nuclear transfer animal models. Reprod Domest Anim 2008;43 Suppl 2:302-309. https://doi.org/10.1111/j.1439-0531.2008.01178.x
  7. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004;428:860-864. https://doi.org/10.1038/nature02402
  8. Wei Y, Yang CR, Zhao ZA. Viable offspring derived from single unfertilized mammalian oocytes. Proc Natl Acad Sci U S A 2022;119:e2115248119.
  9. Boediono A, Suzuki T, Li LY, Godke RA. Offspring born from chimeras reconstructed from parthenogenetic and in vitro fertilized bovine embryos. Mol Reprod Dev 1999;53:159-170. https://doi.org/10.1002/(SICI)1098-2795(199906)53:2<159::AID-MRD5>3.0.CO;2-X
  10. He W, Kong Q, Shi Y, Xie B, Jiao M, Huang T, Guo S, Hu K, Liu Z. Generation and developmental characteristics of porcine tetraploid embryos and tetraploid/diploid chimeric embryos. Genomics Proteomics Bioinformatics 2013;11:327-333. https://doi.org/10.1016/j.gpb.2013.09.007
  11. Hiriart MI, Bevacqua RJ, Canel NG, Fernandez-Martin R, Salamone DF. Production of chimeric embryos by aggregation of bovine egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos. Theriogenology 2013;80:357-364. https://doi.org/10.1016/j.theriogenology.2013.04.023
  12. Lee J, Cai L, Kim M, Choi H, Oh D, Jawad A, Lee E, Hyun SH. Blastomere aggregation using phytohemagglutinin-L improves the establishment efficiency of porcine parthenogenesis-derived embryonic stem-like cell lines. Front Cell Dev Biol 2022;10:948778.
  13. Lee SG, Park CH, Choi DH, Kim HS, Ka HH, Lee CK. In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Mol Reprod Dev 2007;74:1436-1445. https://doi.org/10.1002/mrd.20728
  14. Terashita Y, Sugimura S, Kudo Y, Amano R, Hiradate Y, Sato E. Improving the quality of miniature pig somatic cell nuclear transfer blastocysts: aggregation of SCNT embryos at the four-cell stage. Reprod Domest Anim 2011;46:189-196. https://doi.org/10.1111/j.1439-0531.2010.01614.x
  15. Fan W, Huang T, Wu T, Bai H, Kawahara M, Takahashi M. Zona pellucida removal by acid Tyrode's solution affects pre- and post-implantation development and gene expression in mouse embryos. Biol Reprod 2022;107:1228-1241. https://doi.org/10.1093/biolre/ioac155
  16. Ribeiro ES, Gerger RP, Ohlweiler LU, Ortigari I, Mezzalira JC, Forell F, Bertolini LR, Rodrigues JL, Ambrosio CE, Miglino MA, Mezzalira A, Bertolini M. Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes. Cloning Stem Cells 2009;11:377-386. https://doi.org/10.1089/clo.2009.0022
  17. Savy V, Alberio V, Vans Landschoot G, Moro LN, Olea FD, Rodriguez-Alvarez L, Salamone DF. Effect of embryo aggregation on in vitro development of adipose-derived mesenchymal stem cell-derived bovine clones. Cell Reprogram 2021; 23:277-289. https://doi.org/10.1089/cell.2021.0026
  18. Lee J, Kim E, Hwang SU, Cai L, Kim M, Choi H, Oh D, Lee E, Hyun SH. Effect of D-glucuronic acid and N-acetyl-D-glucosamine treatment during in vitro maturation on embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs. Animals (Basel) 2021;11:1034.
  19. Li R, Liu Y, Pedersen HS, Kragh PM, Callesen H. Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida. Theriogenology 2013;80:58-64. https://doi.org/10.1016/j.theriogenology.2013.03.009
  20. Reardon S. Will pigs solve the organ crisis? The future of animal-to-human transplants. Nature 2022;611:654-656. https://doi.org/10.1038/d41586-022-03794-2
  21. Srirattana K, Kaneda M, Parnpai R. Strategies to improve the efficiency of somatic cell nuclear transfer. Int J Mol Sci 2022;23:1969.
  22. Gouveia C, Huyser C, Egli D, Pepper MS. Lessons learned from somatic cell nuclear transfer. Int J Mol Sci 2020;21:2314.
  23. Naito K, Toyoda Y, Yanagimachi R. Production of normal mice from oocytes fertilized and developed without zonae pellucidae. Hum Reprod 1992;7:281-285. https://doi.org/10.1093/oxfordjournals.humrep.a137633
  24. Oback B, Wiersema AT, Gaynor P, Laible G, Tucker FC, Oliver JE, Miller AL, Troskie HE, Wilson KL, Forsyth JT, Berg MC, Cockrem K, McMillan V, Tervit HR, Wells DN. Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning Stem Cells 2003;5:3-12. https://doi.org/10.1089/153623003321512111
  25. Sampaio MA, Geber S. Births after transfer of zona-free blastocysts in oocyte donation cycles. J Assist Reprod Genet 2001; 18:156-159. https://doi.org/10.1023/A:1009407903447
  26. Mansour RT, Rhodes CA, Aboulghar MA, Serour GI, Kamal A. Transfer of zona-free embryos improves outcome in poor prognosis patients: a prospective randomized controlled study. Hum Reprod 2000;15:1061-1064. https://doi.org/10.1093/humrep/15.5.1061
  27. Nichols J, Gardner RL. Effect of damage to the zona pellucida on development of preimplantation embryos in the mouse. Hum Reprod 1989;4:180-187. https://doi.org/10.1093/oxfordjournals.humrep.a136868
  28. Simmet K, Reichenbach M, Reichenbach HD, Wolf E. Phytohemagglutinin facilitates the aggregation of blastomere pairs from day 5 donor embryos with day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology 2015;84:1603-1610. https://doi.org/10.1016/j.theriogenology.2015.08.012
  29. Jeong PS, Yoon SB, Lee MH, Son HC, Lee HY, Lee S, Koo BS, Jeong KJ, Lee JH, Jin YB, Song BS, Kim JS, Kim SU, Koo DB, Sim BW. Embryo aggregation regulates in vitro stress conditions to promote developmental competence in pigs. PeerJ 2019;7:e8143.
  30. Buemo CP, Gambini A, Moro LN, Hiriart MI, Fernandez-Martin R, Collas P, Salamone DF. Embryo aggregation in pig improves cloning efficiency and embryo quality. PLoS One 2016;11:e0146390.
  31. Ji H, Long C, Feng C, Shi N, Jiang Y, Zeng G, Li X, Wu J, Lu L, Lu S, Pan D. Generation of chimeric minipigs by aggregating 4- to 8-cell-stage blastomeres from somatic cell nuclear transfer with the tracing of enhanced green fluorescent protein. Xenotransplantation 2017;24:e12300.
  32. Tagawa M, Matoba S, Narita M, Saito N, Nagai T, Imai K. Production of monozygotic twin calves using the blastomere separation technique and Well of the Well culture system. Theriogenology 2008;69:574-582. https://doi.org/10.1016/j.theriogenology.2007.11.003
  33. Dai SJ, Xu CL, Wang J, Sun YP, Chian RC. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo. J Assist Reprod Genet 2012;29:617-623. https://doi.org/10.1007/s10815-012-9744-8
  34. Duque Rodriguez M, Gambini A, Ratner LD, Sestelo AJ, Briski O, Gutnisky C, Rulli SB, Fernandez Martin R, Cetica P, Salamone DF. Aggregation of Leopardus geoffroyi hybrid embryos with domestic cat tetraploid blastomeres. Reproduction 2021;161:539-548. https://doi.org/10.1530/REP-20-0589
  35. Hikichi T, Ohta H, Wakayama S, Wakayama T. Functional full-term placentas formed from parthenogenetic embryos using serial nuclear transfer. Development 2010;137:2841-2847. https://doi.org/10.1242/dev.051375
  36. Paldi A, Nagy A, Markkula M, Barna I, Dezso L. Postnatal development of parthenogenetic in equilibrium with fertilized mouse aggregation chimeras. Development 1989;105:115-118. https://doi.org/10.1242/dev.105.1.115