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SCHUR CONVEXITY OF L-CONJUGATE MEANS AND

ITS APPLICATIONS

Chun-Ru Fu, Huan-Nan Shi, and Dong-Sheng Wang

Abstract. In this paper, using the theory of majorization, we discuss

the Schur m power convexity for L-conjugate means of n variables and
the Schur convexity for weighted L-conjugate means of n variables. As

applications, we get several inequalities of general mean satisfying Schur
convexity, and a few comparative inequalities about n variables Gini mean

are established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vectors
on the real number field by Rn.

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n},

Rn
++ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

In particular, R1, R1
+ and R1

++ denoted by R, R+ and R++, respectively.

An(x ) =
1

n

n∑
i=1

xi, Gn(x ) =
n∏

i=1

x
1
n
i , Hn(x ) =

n∑n
i=1 x

−1
i

are the arithmetic mean, geometric mean and harmonic mean of x ∈ Rn
++,

respectively.

M [m]
n (x ) =

(∑n
i=1 x

m
i

n

) 1
m

(m ̸= 0)

is the m-order power mean of x ∈ Rn
++.

Generally, let x ∈ In ⊂ Rn
++, L(x ): In → R++ be a continuous function.

We call L(x ) a mean if it has the following properties:

(i) L(x ) is symmetry with x1, . . . , xn.
(ii) For any λ > 0, if (λx1, . . . , λxn) ∈ In, then

L(λx1, . . . , λxn) = λL(x1, . . . , xn).
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(iii) For any a ∈ I, L(a, . . . , a) = a.
(iv) If 0 < m ≤ xi ≤ M , i = 1, . . . , n, then m ≤ L(x1, . . . , xn) ≤ M .

The concept and method of mean value play a basic role in mathemati-
cal theory, and its mathematical theory research is mainly related to convex
function and inequality theory. For a set of statistics, the mean value can be
regarded as a representative quantity determined by certain criteria. Therefore,
the theoretical study of the mean value is valuable.

The L-conjugate mean was originated from the study of the pseudo arith-
metic mean. In the paper [7], the author studied the conjugate arithmetic
mean:

Definition 1.1 ([7]). A function M : I2 → I is called a conjugate arithmetic
mean in I if there exists φ ∈ CM(I) for which

M(x, y) = φ−1

(
φ(x) + φ(y)− φ

(
x+ y

2

))
(1.1)

for all x, y ∈ I, where CM(I) is a set of all continuous and strictly monotonic
real functions defined on I.

Daróczy and Dascǎl [6] defined a weighted L-conjugate mean of two vari-
ables.

Definition 1.2 ([6]). Let L : I2 → I be a fixed strict mean. A function
M : I2 → I is said to be an L-conjugate mean on I if there exist p, q ∈ [0, 1]
and φ ∈ CM(I) such that

M(x, y) = φ−1 (pφ(x) + qφ(x) + (1− p− q)L(x, y)) , (x, y) ∈ I2(1.2)

the numbers p,q are said to be the weights and the function is called the
generating function of the mean M.

In paper [8], Daróczy and Páles introduced the notion of L-conjugate mean
of n > 2 variables.

Definition 1.3 ([8, 21]). L-conjugate means of n ≥ 2 variables defined by

L∗
ϕ(x1, . . . , xn) = ϕ−1

(
ϕ(x1) + · · ·+ ϕ(xn)− ϕ(L(x1, . . . , xn))

n− 1

)
,(1.3)

where L : In → I is a symmetric mean on the open real interval I and ϕ : I → R
is a continuous and strictly monotonic function.

Let p = (p1, . . . , pn) ∈ Rn
+ and w = (w1, . . . , wm) ∈ Rm

+ , when we say that
a pair (p,w) is admissible, we mean that for all i ∈ (1, . . . , n) inequality

pi ≥
m∑
j=1

wj

holds.
In 2007, Bakula et al. [11] defines weighted L-conjugate mean.
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Definition 1.4 ([11]). Let n ≥ 2, m ≥ 1, L = (L1, . . . , Lm) be an m-tuple
of fixed means of n variables on an open real interval I, and φ is a strictly
monotonic and differentiable function. Let x ∈ In and (p,w) be an admissible
pair, where p ∈ Rn

+ and w ∈ Rm
+ . The weighted L-conjugate mean L∗

φ of
n-tuple x with weights (p,w) is defined as

L∗
φ(x ;p,w) = φ−1

(∑n
i=1 piφ(xi)−

∑m
j=1 wjφ(Lj(x ))

Pn −Wm

)
,(1.4)

where

Pn =

n∑
i=1

pi, Wm =

m∑
j=1

wj .

In recent years, the theory of majorization has been used as an important
tool in studying the properties of the means (see [2–5,9, 14–16,18,19,22–26]).

In this paper, we discuss Schur convexity of weighted L-conjugate mean for
n variables and Schur m power convexty of L-conjugate mean for n variables,
as an application, some new inequalities about mean are obtained.

Our main result is as follows.

Theorem 1.5. Let φ(x) be a continuous function on I ⊂ R, D = {x : x1 ≥
· · · ≥ xn}, and Lj(x), j = 1, . . . ,m, be m fixed means.

(i) If φ is strictly increasing and convex on I , Lj (j = 1, . . . ,m) is Schur
concave and p1 ≥ · · · ≥ pn > 0, then L∗

φ(x;p,w) is Schur convex on D∩ I with
x.

If φ is strictly increasing and concave on I , Lj (j = 1, . . . ,m) is Schur
convex and 0 < p1 ≤ · · · ≤ pn, then L∗

φ(x;p,w) is Schur concave on D∩ I with
x.

(ii) If φ is strictly decreasing and concave on I , Lj (j = 1, . . . ,m) is Schur
concave, and p1 ≥ · · · ≥ pn > 0, then L∗

φ(x;p,w) is Schur convex on D ∩ I
with x.

If φ is strictly decreasing and convex on I , Lj (j = 1, . . . ,m) is Schur
convex, and 0 < p1 ≤ · · · ≤ pn, then L∗

φ(x;p,w) is Schur concave on D ∩ I
with x.

Theorem 1.6. Let ϕ(x) be a strictly monotone continuous function on I ⊂ R,
L(x) be a fixed mean, and m ∈ R.

(i) For m < 1 and m ̸= 0, if ϕ is strictly increasing and convex, or ϕ
is strictly decreasing and concave, and L(x) is Schur m power concave, then
L∗
ϕ(x) is Schur m power convex with x.

(ii) For m = 1,

(1) if ϕ is strictly increasing and convex, L(x) is Schur concave, or ϕ is
strictly decreasing and concave, and L(x) is Schur concave, then L∗

ϕ(x)
is Schur convex with x;
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(2) if ϕ is strictly increasing and concave, L(x) is Schur convex, or ϕ is
strictly decreasing and convex, L(x) is Schur convex, then L∗

ϕ(x) is
Schur concave with x.

(iii) For m > 1, if ϕ is strictly increasing and concave, or ϕ is strictly
decreasing and convex, L(x) is Schur m power convex, then L∗

ϕ(x) is Schur m
power concave with x.

(iv) For m = 0,

(1) if ϕ is strictly increasing and convex, L(x) is Schur geometrically con-
cave, then L∗

ϕ(x) is Schur geometrically convex with x;

(2) if ϕ is strictly decreasing and concave, L(x) is Schur geometrically con-
cave, then L∗

ϕ(x) is Schur geometrically concave with x.

2. Preliminaries

We introduce some definitions and lemmas, which will be used in the proofs
of the main results in subsequent sections.

Definition 2.1 ([13]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤∑k
i=1 y[i] for k = 1, . . . , n − 1 and

∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥

· · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a
descending order.

(ii) A set Ω ⊂ Rn is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω
for any x and y ∈ Ω, where α and β ∈ [0, 1] with α+ β = 1.

(iii) Let Ω ⊂ Rn. A function φ: Ω → R is said to be a Schur convex
function on Ω if x ≺ y on Ω implies φ (x) ≤ φ (y). A function φ is
said to be a Schur concave function on Ω if and only if −φ is a Schur
convex function.

Definition 2.2 ([27]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn
++.

(i) A set Ω ∈ Rn
++ is called a geometrically convex set if (xα

1 y
β
1 , . . . , x

α
ny

β
1 ) ∈

Ω for any x and y ∈ Ω, where α and β ∈ [0, 1] with α+ β = 1.
(ii) Let Ω ⊂ Rn

+. A function φ : Ω → R+ is said to be a Schur-geometrically
convex function on Ω if (log x1, . . . , log xn) ≺ (log y1, . . . , log yn) on Ω
implies φ(x) ≤ φ(y). A function φ is said to be a Schur geometrically
concave function on Ω if and only if −φ is a Schur geometrically convex
function.

Definition 2.3 ([17]). Let Ω ⊂ Rn
++.

(i) A set Ω is said to be a harmonically convex set if xy
λx+(1−λ)y ∈ Ω

for every x,y ∈ Ω and λ ∈ [0, 1], where xy =
∑n

i=1 xiyi and 1
x =(

1
x1
, . . . , 1

xn

)
.

(ii) A function φ : Ω → R+ is said to be a Schur harmonically convex
function on Ω if 1

x ≺ 1
y implies φ(x) ≤ φ(y). A function φ is said to



SCHUR CONVEXITY OF L-CONJUGATE MEANS AND ITS APPLICATIONS 507

be a Schur harmonically concave function on Ω if and only if −φ is a
Schur harmonically convex function.

Definition 2.4 ([17]). Let f : R+ → R be defined by

(2.1) f(x) =

{
xm−1

m , m ̸= 0;

log x, m = 0.

Then a function φ : Ω ⊂ Rn
+ → R is said to be Schur m-power convex on Ω if

(f(x1), . . . , f(xn)) ≺ (f(y1), . . . , f(yn))

for all x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Ω implies φ(x) ≤ φ(y).
If −φ is Schurm power convex, then we say that φ is Schurm power concave.

If putting f(x) = x, lnx, 1
x in Definition 2.4, then the definitions of Schur

convex, Schur geometrically convex, and Schur harmonically convex functions
can be deduced, respectively.

Lemma 2.5 ([13, 20]). Let Ω ⊂ Rn be a convex set, and have a nonempty
interior set Ω◦. Let φ : Ω → R be continuous on Ω and differentiable in Ω◦.
Then φ is the Schur convex (or Schur concave, respectively) function if and
only if it is symmetric on Ω and

(x1 − x2)

(
∂φ

∂x1
− ∂φ

∂x2

)
≥ 0 (or ≤ 0, respectively)

holds for any x = (x1, . . . , xn) ∈ Ω◦.

Remark 2.6. Lemma 2.5 equivalent to

∂φ

∂xi
≥ ∂φ

∂xi+1
(or ≤ 0, respectively), i = 1, . . . , n− 1,

for all x ∈ D ∩ Ω, where D = {x : x1 ≥ · · · ≥ xn}.

Lemma 2.7 ([27]). Let Ω ⊂ Rn
++ be a convex set with a nonempty interior

set Ω◦ and φ : Ω → R be continuous on Ω and differentiable in Ω◦. Then φ is
the Schur geometrically convex (or Schur geometrically concave, respectively)
function if and only if it is symmetric on Ω and

(log x1 − log x2)

(
x1

∂φ

∂x1
− x2

∂φ

∂x2

)
≥ 0 (or ≤ 0, respectively)(2.2)

holds for any x = (x1, . . . , xn) ∈ Ω◦.

Lemma 2.8 ([17]). Let Ω ⊂ Rn be a symmetric harmonically convex set with a
nonempty interior Ω◦ and φ : Ω → R be continuous on Ω and differentiable on
Ω. Then φ is the Schur harmonically convex (or Schur harmonically concave,
respectively) function if and only if φ is symmetric on Ω and

(x1 − x2)

(
x2
1

∂φ

∂x1
− x2

2

∂φ

∂x2

)
≥ 0 (or ≤ 0, respectively)(2.3)

holds for any x = (x1, . . . , xn) ∈ Ω◦.
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Lemma 2.9 ([17]). Let Ω ⊂ Rn be a symmetric set with a nonempty interior
Ω◦ and φ : Ω → R be continuous on Ω and differentiable in Ω◦. Then φ is
the Schur m power convex (or Schur m power concave, respectively) function
if and only if φ is symmetric on Ω and for m ̸= 0,

xm
1 − xm

2

m

(
x1−m
1

∂φ

∂x1
− x1−m

2

∂φ

∂x2

)
≥ 0 (or ≤ 0, respectively)(2.4)

holds for any x = (x1, . . . , xn) ∈ Ω◦.
And for m = 0,

(log x1 − log x2)

(
x1

∂φ(x)

∂x1
− x2

∂φ(x)

∂x2

)
≥ 0 (or ≤ 0, respectively)(2.5)

holds for any x = (x1, . . . , xn) ∈ Ω◦.

Obviously, Lemma 2.9 contains Lemma 2.5, Lemma 2.7, Lemma 2.8.

Lemma 2.10 ([13, 17]). Let x = (x1, . . . , xn) ∈ Rn
++, An(x) = 1

n

∑n
i=1 xi

is an arithmetic mean, Gn(x) =
∏n

i=1 x
1
n
i is a geometric mean, M

[m]
n (x) =(∑n

i=1 xm
i

n

) 1
m

(m ̸= 0) is an m-order power mean. Then

(i)

(2.6) (An(x), . . . , An(x)︸ ︷︷ ︸
n

) ≺ (x1, . . . , xn).

(ii)

(2.7)

 (M
[m]
n (x))m − 1

m
, . . . ,

(M
[m]
n (x))m − 1

m︸ ︷︷ ︸
n

 ≺
(
xm
1 − 1

m
, . . . ,

xm
n − 1

m

)
.

(iii)

(2.8)

logGn(x), . . . , logGn(x)︸ ︷︷ ︸
n

 ≺ (log x1, . . . , log xn).

(iv) If 0 < r ≤ s, then

(2.9)

(
xr
1∑n

i=1 x
r
i

, . . . ,
xr
n∑n

i=1 x
r
i

)
≺
(

xs
1∑n

i=1 x
s
i

, . . . ,
xs
n∑n

i=1 x
s
i

)
.

(v) Let
∑n

i=1 xi = s. For any c > 0, then

(2.10)

(
x1 + c

s+ nc
, . . . ,

xn + c

ns+ c

)
≺
(x1

s
, . . . ,

xn

s

)
.

(vi) Let
∑n

i=1 xi = s. For any 0 < c < min{xi}, then

(2.11)

(
x1 − c

s− nc
, . . . ,

xn − c

s− nc

)
≻
(x1

s
, . . . ,

xn

s

)
.
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(vii) Let
∑n

i=1 xi = s. For any c ≥ s, then

(2.12)

(
c− x1

nc− s
, . . . ,

c− xn

nc− s

)
≺
(x1

s
, . . . ,

xn

s

)
.

3. Proof of main results

3.1. Proof of Theorem 1.5

Write

h(x1, . . . , xn) =

∑n
i=1 piφ(xi)−

∑m
j=1 wjφ(Lj(x ))

Pn −Wm
,

where x ∈ D ∩ I, D = {x : x1 ≥ · · · ≥ xn}. By Definition 1.4, we have

∂L∗
φ

∂xi
=

∂φ−1

∂h
· ∂h

∂xi

=
1

Pn −Wm

∂φ−1

∂h

pi
dφ(xi)

dxi
−

m∑
j=1

wj
∂φ

∂Lj

∂Lj

∂xi

 ,

∂L∗
φ

∂xi+1
=

∂φ−1

∂h
· ∂h

∂xi+1

=
1

Pn −Wm

∂φ−1

∂h

pi+1
dφ(xi+1)

dxi+1
−

m∑
j=1

wj
∂φ

∂Lj

∂Lj

∂xi+1

 ,

∂L∗
φ

∂xi
−

∂L∗
φ

∂xi+1
=

1

Pn −Wm

∂φ−1

∂h

×

(pi dφ(xi)

dxi
− pi+1

dφ(xi+1)

dxi+1

)
+

m∑
j=1

wj
∂φ

∂Lj

(
∂Lj

∂xi+1
− ∂Lj

∂xi

).
(i) If φ is strictly increasing and convex on I, then φ−1 is strictly increasing.

If Lj is Schur concave and p1 ≥ · · · ≥ pn > 0, then

∂φ−1

∂h
> 0, pi

dφ(xi)

dxi
− pi+1

dφ(xi+1)

dxi+1
≥ 0,

∂φ

∂Lj
> 0,

∂Lj

∂xi+1
− ∂Lj

∂xi
≥ 0.

Therefore
∂L∗

φ

∂xi
− ∂L∗

φ

∂xi+1
≥ 0, by Lemma 2.5, L∗

φ is Schur convex with x on D∩I.

If φ is strictly increasing and concave on I, then φ−1 is strictly increasing.
If Lj is Schur convex, and 0 < p1 ≤ · · · ≤ pn, then

∂φ−1

∂h
> 0, pi

dφ(xi)

dxi
− pi+1

dφ(xi+1)

dxi+1
≤ 0,
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∂φ

∂Lj
> 0,

∂Lj

∂xi+1
− ∂Lj

∂xi
≤ 0.

Therefore
∂L∗

φ

∂xi
− ∂L∗

φ

∂xi+1
≤ 0, by Lemma 2.5, L∗

φ is Schur concave with x on

D ∩ I.
Similar to prove (ii).
The proof of Theorem 1.5 is complete.

3.2. Proof of Theorem 1.6

Write

k(x1, . . . , xn) =
ϕ(x1) + · · ·+ ϕ(xn)− ϕ(L(x1, . . . , xn))

n− 1
,

by Definition 1.3, we have

x1−m
1

∂L∗
ϕ

∂x1
= x1−m

1

dϕ−1

dk

∂k

∂x1
=

x1−m
1

n− 1

dϕ−1

dk

(
dϕ(x1)

dx1
− dϕ

dL

∂L

∂x1

)
,

x1−m
2

∂L∗
ϕ

∂x2
= x1−m

2

dϕ−1

dk

∂k

∂x2
=

x1−m
2

n− 1

dϕ−1

dk

(
dϕ(x2)

dx2
− dϕ

dL

∂L

∂x2

)
,

for m ̸= 0,

△m :=
xm
1 − xm

2

m

(
x1−m
1

∂L∗
ϕ

∂x1
− x1−m

2

∂L∗
ϕ

∂x2

)
=

xm
1 − xm

2

(n− 1)m

dϕ−1

dk

[(
x1−m
1

dϕ(x1)

dx1
− x1−m

2

dϕ(x2)

dx2

)
+

dϕ

dL

(
x1−m
2

∂L

∂x2
− x1−m

1

∂L

∂x1

)]
.

It is easy to see that L∗
ϕ is symmetry with x1, . . . , xn, without loss of generality,

we might as well assume x1 ≥ x2 > 0, and let z = x1

x2
≥ 1, we have

△m =
x2(z

m − 1)

(n− 1)m

dϕ−1

dk

[(
z1−m dϕ(x1)

dx1
− dϕ(x2)

dx2

)
+

dϕ

dL

(
x1−m
2

∂L

∂x2
− x1−m

1

∂L

∂x1

)]
,

and note that for m ̸= 0, zm−1
m ≥ 0, and ϕ, ϕ−1 have the same monotonicity.

(i) For m < 1 and m ̸= 0,
(1) If ϕ is strictly increasing and convex, and L(x) is Schur m power
concave, then

dϕ−1

dk
≥ 0, z1−m dϕ(x1)

dx1
− dϕ(x2)

dx2
≥ dϕ(x1)

dx1
− dϕ(x2)

dx2
≥ 0,

dϕ

dL
≥ 0, x1−m

2

∂L

∂x2
− x1−m

1

∂L

∂x1
≥ 0,

so that △m ≥ 0.
(2) If ϕ is strictly decreasing and concave, and L(x) is Schur m power
concave, then

dϕ−1

dk
≤ 0, z1−m dϕ(x1)

dx1
− dϕ(x2)

dx2
≤ dϕ(x1)

dx1
− dϕ(x2)

dx2
≤ 0,
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dϕ

dL
≤ 0, x1−m

2

∂L

∂x2
− x1−m

1

∂L

∂x1
≥ 0,

so that △m ≥ 0.
By Lemma 2.9, L∗

ϕ(x) is Schur m power convex with x.

(ii) For m = 1, in Theorem 1.5, taking p1 = · · · = pn = 1, w1 = 1, w2 =
· · · = wm = 0, we can see that (ii) is established.

(iii) For m > 1,
(1) If ϕ is strictly increasing and concave, and L(x) is Schur m power
convex, then

dϕ−1

dk
≥ 0, z1−m dϕ(x1)

dx1
− dϕ(x2)

dx2
≤ dϕ(x1)

dx1
− dϕ(x2)

dx2
≤ 0,

dϕ

dL
≥ 0, x1−m

2

∂L

∂x2
− x1−m

1

∂L

∂x1
≤ 0,

so that △m ≤ 0.
(2) If ϕ is strictly decreasing and convex, and L(x) is Schur m power
convex, then

dϕ−1

dk
≤ 0, z1−m dϕ(x1)

dx1
− dϕ(x2)

dx2
≥ dϕ(x1)

dx1
− dϕ(x2)

dx2
≥ 0,

dϕ

dL
≤ 0, x1−m

2

∂L

∂x2
− x1−m

1

∂L

∂x1
≤ 0,

so that △m ≤ 0.
By Lemma 2.9, L∗

ϕ(x) is Schur m power concave with x.

(iv) For m = 0,

△0 := (log x1 − log x2)

(
x1

∂L∗
ϕ

∂x1
−

∂L∗
ϕ

∂x2

)
=

x2(log x1 − log x2)

n− 1

[(
z
dϕ(x1)

dx1
− dϕ(x2)

dx2

)
+

dϕ

dL

(
x2

∂L

∂x2
− x1

∂L

∂x1

)]
.

(1) If ϕ is strictly increasing and convex, and L(x) is Schur geometri-
cally concave, then

z
dϕ(x1)

dx1
− dϕ(x2)

dx2
≥ dϕ(x1)

dx1
− dϕ(x2)

dx2
≥ 0,

dϕ

dL
≥ 0, x2

∂L

∂x2
− x1

∂L

∂x1
≥ 0,

so that △0 ≥ 0. By Lemma 2.7, L∗
ϕ(x) is Schur geometrically convex

with x.
(2) If ϕ is strictly decreasing and concave, and L(x) is Schur geometri-
cally concave, we have

z
dϕ(x1)

dx1
− dϕ(x2)

dx2
≤ dϕ(x1)

dx1
− dϕ(x2)

dx2
≤ 0,
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dϕ

dL
≤ 0, x2

∂L

∂x2
− x1

∂L

∂x1
≥ 0,

so that △0 ≤ 0. By Lemma 2.7, L∗
ϕ(x) is Schur geometrically concave

with x.

The proof of Theorem 1.6 is complete.

4. Applications

As applications of Theorem 1.5 and Theorem 1.6, we establish the following
new inequalities for the mean.

Theorem 4.1. Let ϕ(x) be a strictly monotone continuous function on I ⊂ R,
L(x) be a fixed mean with x = (x1, . . . , xn).

(i) For any real number m < 1 and m ̸= 0, if ϕ is strictly increasing and
convex, or ϕ is strictly decreasing and concave, L(x) is Schur m power
concave, then

L∗
ϕ(x) ≥ M [m]

n (x).(4.1)

(ii) For any real number m > 1, if ϕ is strictly increasing and concave,
or ϕ is strictly decreasing and convex, L(x) is Schur m power convex,
then

L∗
ϕ(x) ≤ M [m]

n (x).(4.2)

Proof. (i) By Theorem 1.6(i), Lemma 2.10(ii), Definition 2.1 and the property
of the mean, we have

L∗
ϕ(x ) ≥ ϕ−1

(
ϕ(M

[m]
n (x )) + · · ·+ ϕ(M

[m]
n (x ))− ϕ(L(M

[m]
n (x )), . . . ,M

[m]
n (x ))

n− 1

)
= ϕ−1ϕ(M [m]

n (x )) = M [m]
n (x ).

Using similar methods, (ii) can be proved.
The proof of Theorem 4.1 is complete. □

By Theorem 1.6(iv), Lemma 2.10(iii), Definition 2.2 and the property of the
mean, we have the following conclusion.

Theorem 4.2. Let x ∈ Rn
++, L(x) be a fixed mean.

(i) If ϕ is strictly increasing and convex, L(x) is Schur geometrically con-
cave, then

L∗
ϕ(x) ≥ Gn(x).(4.3)

(ii) If ϕ is strictly decreasing and concave, L(x) is Schur geometrically
concave, then

L∗
ϕ(x) ≤ Gn(x).(4.4)
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Theorem 4.3. Let x ∈ Rn
++, c > 0 and

∑n
i=1 xi = s. If L(x) is an arbitrary

Schur convex mean, then

L(x1 + c, . . . , xn + c)

L(x1, . . . , xn)
≤
(

s

s+ nc

)n−1 n∏
i=1

(
1 +

c

xi

)
.(4.5)

Proof. Let ϕ(x) = log x. By Theorem 1.6(ii), we know that L∗
log(x) is Schur

concave, and according to majorizing inequality in Lemma 2.10(v):(
x1 + c

s+ nc
, . . . ,

xn + c

s+ nc

)
≺
(x1

s
, . . . ,

xn

s

)
,

by Definition 2.1 and notice the mean’s property: L(λx) = λL(x), it is easy to
prove the inequality (4.5) hold.

The proof of Theorem 4.3 is complete. □

For any Schur convex mean, we can obtain the following mean comparison
theorem by combining Theorem 1.6 with majorizing inequality.

Theorem 4.4. Let x ∈ Rn
++, L(x) be an arbitrary Schur convex mean, and∑n

i=1 xi = s.
(i) If 0 < c < min{xi}, then

L(x1 − c, . . . , xn − c)

L(x1, . . . , xn)
≥
(

s

s− nc

)n−1 n∏
i=1

(
1− c

xi

)
.(4.6)

(ii) If c ≥ s, then

L(c− x1, . . . , c− xn)

L(x1, . . . , xn)
≤
(

s

nc− s

)n−1 n∏
i=1

(
c

xi
− 1

)
.(4.7)

Proof. Let ϕ(x) = log x. By Theorem 1.6(ii), from majorizing inequality in
Lemma 2.10(vi): (

x1 − c

s− nc
, . . . ,

xn − c

s− nc

)
≻
(x1

s
, . . . ,

xn

s

)
,

and majorizing inequality in Lemma 2.10(vii):(
c− x1

nc− s
, . . . ,

c− xn

nc− s

)
≺
(x1

s
, . . . ,

xn

s

)
,

it is easy to prove the inequality (4.6) and inequality (4.7) hold.
The proof of Theorem 4.4 is complete. □

Let

L(x1, . . . , xn) = M [m]
n (x) =

(∑n
i=1 x

m
i

n

) 1
m

, (m ≥ 1).
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It is easy to seeM
[m]
n (x) is symmetry with x1, . . . , xn, without loss of generality,

we might as well assume x1 ≥ x2 > 0. Write

k =
1

n

n∑
i=1

xm
i ,

then
∂M

[m]
n (x)

∂x1
=

k
1
m−1

n
xm−1
1 ,

∂M
[m]
n (x)

∂x2
=

k
1
m−1

n
xm−1
2 ,

△m : = (x1 − x2)

(
∂M

[m]
n (x)

∂x1
− ∂M

[m]
n (x)

∂x2

)

= (x1 − x2)
mk

1
m−1

n
(xm−1

1 − xm−1
2 ) ≥ 0.

So, when m ≥ 1, M
[m]
n (x) is Schur convex.

By Theorem 4.3 and Theorem 4.4(i), we get the following conclusion.

Corollary 4.5. Let x = (x1, . . . , xn) ∈ Rn
++. If m ≥ 1, 0 < c < min{xi},

then

An−1
n (x+ c)M

[m]
n (x+ c)

Gn
n(x+ c)

≤ An−1
n (x)M

[m]
n (x)

Gn
n(x)

(4.8)

≤ An−1
n (x− c)M

[m]
n (x− c)

Gn
n(x− c)

.

Let m = 1, by Corollary 4.5 we get

An(x+ c)

Gn(x+ c)
≤ An(x)

Gn(x)
≤ An(x− c)

Gn(x− c)
.(4.9)

Let L(x) = M
[m]
n (x), (m ≥ 1). When

∑n
i=1 xi ≤ 1, by Theorem 4.4(ii), we

have (
M

[m]
n (1− x)(An(1− x))n−1

M
[m]
n (x)(An(x))n−1

) 1
n

≤ Gn(1− x)

Gn(x)
.(4.10)

Let m = 1, we get Ky Fan’s inequality

Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)
.(4.11)

Theorem 4.6. Let D = {x : x1 ≥ · · · ≥ xn}, Lj(x), x ∈ Rn
++ (j = 1, . . . ,m)

be m fixed means, (p,w) be an admissible pair. For ∀x ∈ D ∩ Rn
++,

(i) If p1 ≥ · · · ≥ pn > 0, wj > 0, j = 1, . . . ,m and Lj, j = 1, . . . ,m are
Schur concave, then for r ≥ 1, we have

m∑
j=1

wjL
r
j(x1, . . . , xn) ≤

n∑
i=1

pix
r
i − (Pn −Wm)Ar

n(x).(4.12)
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(ii) If 0 < p1 ≤ · · · ≤ pn, wj > 0, j = 1, . . . ,m and Lj, j = 1, . . . ,m are
Schur convex, then for 0 < r ≤ 1, we have

m∑
j=1

wjL
r
j(x1, . . . , xn) ≥

n∑
i=1

pix
r
i − (Pn −Wm)Ar

n(x),(4.13)

where Pn =
∑n

i=1 pi, Wm =
∑m

j=1 wj.

Proof. Let φ(x) = xr (r ≥ 1), p1 ≥ · · · ≥ pn > 0, wj > 0, j = 1, . . . ,m. Then

L∗
φ(x1, . . . , xn;p,w) =

(∑n
i=1 pix

r
i −

∑m
j=1 wjL

r
j(x1, . . . , xn)

Pn −Wm

) 1
r

.

We know that φ is strictly increasing and convex on R+, Lj (j = 1, . . . ,m) are
Schur concave on R++, by Theorem 1.5(i), it follows that L∗

φ is Schur convex
with x1, . . . , xn. By Definition 2.1 and

(x1, . . . , xn) ≻ (An(x ), . . . , An(x )︸ ︷︷ ︸
n

),

we have

L∗
φ(x1, . . . , xn;p,w) ≥ L∗

φ(An(x ), . . . , An(x );p,w)

thus (∑n
i=1 pix

r
i −

∑m
j=1 wjL

r
j(x1, . . . , xn)

Pn −Wm

) 1
r

≥

(∑n
i=1 piA

r
n(x )−

∑m
j=1 wjL

r
j(An(x ), . . . , An(x ))

Pn −Wm

) 1
r

⇒

(∑n
i=1 pix

r
i −

∑m
j=1 wjL

r
j(x1, . . . , xn)

Pn −Wm

) 1
r

≥

(∑n
i=1 piA

r
n(x )−

∑m
j=1 wjA

r
n(x )

Pn −Wm

) 1
r

= An(x ),

that is,

m∑
j=1

wjL
r
j(x1, . . . , xn) ≤

n∑
i=1

pix
r
i − (Pn −Wm)Ar

n(x).

By similar method, we can prove the inequality (4.13).
The proof of Theorem 4.6 is complete. □
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As an example in Theorem 4.6, let pi = 1, wi =
1
n , i = 1, . . . , n, Lj(x) =

An(x). For r > 1, we get the power mean inequality:

(An(x))
r ≤ 1

n

n∑
i=1

xr
i .

In 1938, Gini introduced a mean of two variables with double parameters.

Definition 4.7 ([10]). Let (r, s) ∈ R2, (a, b) ∈ R2
++. The Gini mean of two

variables is defined as

G(r, s; a, b) =

(
as + bs

ar + br

) 1
s−r

, (s ̸= r).(4.14)

Gini mean of two variables contains many important mean, for example,
G(0, p; a, b), p ̸= 0 is a p power mean of two variables, G(p−1, p; a, b) is Lehmer
mean of two variables.

Gini mean of two variables can naturally be extended to the form of n
variables.

Definition 4.8 ([1]). Let x = (x1, . . . , xn) ∈ Rn
++, (r, s) ∈ R2, s ̸= r. The

Gini mean of n is variables defined as

G(r, s;x) =

(∑n
i=1 x

s
i∑n

i=1 x
r
i

) 1
s−r

(s ̸= r).(4.15)

We get the following conclusion for the comparison of arbitrary Schur convex
mean with Gini mean.

Theorem 4.9. Let xi ∈ R++, i = 1, . . . , n, L(x1, . . . , xn) be an arbitrary Schur
convex mean. If 0 < r < s, then(

n∏
i=1

xi

) 1
n−1 (

L(xr
1, . . . , x

r
n)

L(xs
1, . . . , x

s
n)

) 1
(n−1)(s−r)

≤ G(r, s;x)(4.16)

≤
(
L(xs

1, . . . , x
s
n)

L(xr
1, . . . , x

r
n)

) 1
s−r

.

Proof. Let ϕ(x) = log x. Then ϕ(x) is strictly increasing and concave, and
L(x1, . . . , xn) is Schur convex, by Theorem 1.6(ii), it follows that

L∗
log(x1, . . . , xn) = exp

(
log x1 + · · ·+ log xn − logL(x1, . . . , xn)

n− 1

)
is Schur concave.

By the majorizing inequality in Lemma 2.10(iv):(
xr
1∑n

i=1 x
r
i

, . . . ,
xr
n∑n

i=1 x
r
i

)
≺
(

xs
1∑n

i=1 x
s
i

, . . . ,
xs
n∑n

i=1 x
s
i

)
,
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Definition 2.1, and notice that property of the mean: L(λx) = λL(x), we have

exp

 log
xr
1∑n

i=1 xr
i
+ · · ·+ log

xr
n∑n

i=1 xr
i
− logL(

xr
1∑n

i=1 xr
i
, . . . ,

xr
n∑n

i=1 xr
i
)

n− 1


≥ exp

 log
xs
1∑n

i=1 xs
i
+ · · ·+ log

xs
n∑n

i=1 xs
i
− logL(

xs
1∑n

i=1 xs
i
, . . . ,

xs
n∑n

i=1 xs
i
)

n− 1


⇒

∏n
i=1 xr

i

(
∑n

i=1 xr
i )

n
L
(

xr
1∑n

i=1
xr
i
,...,

xr
n∑n

i=1
xr
i

) ≥
∏n

i=1 xs
i

(
∑n

i=1 xs
i )

n
L
(

xs
1∑n

i=1
xs
i
,...,

xs
n∑n

i=1
xs
i

)

⇒ (
∑n

i=1 xs
i )

n

(
∑n

i=1 xr
i )

n ≥
∏n

i=1 xs
i∑n

i=1
xr
i
L(xr

1,...,x
r
n)∏n

i=1
xr
i∑n

i=1
xs
i
L(xs

1,...,x
s
n)

⇒
(∑n

i=1 xs
i∑n

i=1 xr
i

)n−1

≥
∏n

i=1 x
s−r
i

L(xr
1,...,x

r
n)

L(xs
1,...,x

s
n)

⇒
[(∑n

i=1 xs
i∑n

i=1 xr
i

) 1
s−r

]n−1

≥
∏n

i=1 xi

(
L(xr

1,...,x
r
n)

L(xs
1,...,x

s
n)

) 1
s−r

⇒ G(r, s;x) ≥ (
∏n

i=1 xi)
1

n−1

(
L(xr

1,...,x
r
n)

L(xs
1,...,x

s
n)

) 1
(n−1)(s−r)

.

Because L(x1, . . . , xn) is a Schur convex mean, by the majorizing inequality(
xr
1∑n

i=1 x
r
i

, . . . ,
xr
n∑n

i=1 x
r
i

)
≺
(

xs
1∑n

i=1 x
s
i

, . . . ,
xs
n∑n

i=1 x
s
i

)
,

Definition 2.1, and notice that property of the mean: L(λx) = λL(x), we have

L

(
xs
1∑n

i=1 x
s
i

, . . . ,
xs
n∑n

i=1 x
s
i

)
≥ L

(
xr
1∑n

i=1 x
r
i

, . . . ,
xr
n∑n

i=1 x
r
i

)
⇒ L(xs

1, . . . , x
s
n)∑n

i=1 x
s
i

≥ L(xr
1, . . . , x

r
n)∑n

i=1 x
r
i

⇒ L(xs
1, . . . , x

s
n)

L(xr
1, . . . , x

r
n)

≥
∑n

i=1 x
s
i∑n

i=1 x
r
i

⇒ G(r, s;x) =

(∑n
i=1 x

s
i∑n

i=1 x
r
i

) 1
s−r

≤
(
L(xs

1, . . . , x
s
n)

L(xr
1, . . . , x

r
n)

) 1
s−r

.

The proof of Theorem 4.9 is complete. □

Let L(x1, . . . , xn) = M
[m]
n (x) (m ≥ 1). By Theorem 4.9, we get the following

conclusion.
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Corollary 4.10. Let x = (x1, . . . , xn) ∈ Rn
++. If 0 < r < s, m ≥ 1, then

G(r, s;x) ≥ [Gn(x)]
1+ 1

n−1

[
M

[m]
n (xr)

M
[m]
n (xs)

] 1
(n−1)(s−r)

.(4.17)

Let m = 1, by Corollary 4.10, we have:

Corollary 4.11. Let x = (x1, . . . , xn) ∈ Rn
++. If 0 < r < s, then

G(r, s;x) ≥ Gn(x).(4.18)

Remark 4.12. The following inequalities were introduced in ([12], p. 215):
Let a = (a1, . . . , an). If ak ≥ 1 (1 ≤ k ≤ n), p > 0, then

Hn(a)
n∑

k=1

apk ≤
n∑
k

ap+1
k .(4.19)

By Corollary 4.11, we can improve the inequality (4.19) as follows.
Let a = (a1, . . . , an). If ak > 0 (1 ≤ k ≤ n), p > 0, then

Hn(a)
n∑

k=1

apk ≤ Gn(a)
n∑

k=1

apk ≤
n∑
k

ap+1
k .(4.20)
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