SYMMETRY OF THE TWISTED GROMOV-WITTEN CLASSES OF PROJECTIVE LINE

Hyenho Lho

Abstract

We study the rationality and symmetry of the Gromov-Witten invariants of the projective line twisted by certain line bundles.

1. Introduction

1.1. Overview

Let X be a smooth algebraic variety and let S be a line bundle on X. Via some Gromov-Witten theories over X, we define certain classes in tautological ring $\mathcal{R}_{X, S}$ of X. See Section 4.3 for the definition of $\mathcal{R}_{X, S}$. Motivated from the rationality and symmetry of the Gromov-Witten invariants of total spaces of $\mathcal{O}_{\mathbb{P}^{1}}(-2)$ and $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$, we study the rationality and symmetry of related Gromov-Witten classes in $\mathcal{R}_{X, S}$.

While the localization method works for both the Gromov-Witten and the stable quotient theories, in general calculations can be performed more efficiently on the stable quotient side. We study the stable quotient theory of $\mathcal{O}_{\mathbb{P}^{1}}(-2)$ and recover the Gromov-Witten theory via the wall-crossing formula in Section 2. Since the wall-crossing formula for $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ is trivial, we directly study Gromov-Witten theory of $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ in Section 3.

The quasimap invariants of $\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-2,-2)$ were studied in [13, Theorem 4]. The Gromov-Witten invariants of $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ were studied in $[5,8]$ via localization and Hodge integrals over the moduli space of curves. The result for $\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-2,-2)$ was studied in [11, Section 6.10] using symmetries on the symplectic invariants of STU model. For local toric Hirzebruch surfaces, another approach has been pursued by Buelles and Moreira via PT invariants [2].

Received July 20, 2021; Revised January 22, 2023; Accepted January 26, 2023.
2020 Mathematics Subject Classification. 14D23.
Key words and phrases. Gromov-Witten invariants, rationality.

1.2. Gromov-Witten theory of \mathbb{P}^{1} twisted by $\mathcal{O}_{\mathbb{P}^{1}}(-2)$

Let X be a smooth algebraic variety, and let S be a line bundle on X. Let π_{i} be the projection maps

$$
\pi_{1}: X \times \mathbb{P}^{1} \rightarrow X, \quad \pi_{2}: X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}
$$

Denote by Y the total space of the line bundle

$$
E:=\pi_{1}^{*}\left(S^{-1}\right) \otimes \pi_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-2)
$$

on $X \times \mathbb{P}^{1}$. For $\beta \in H_{2}(X, \mathbb{Z}), d \in \mathbb{Z}$, let π be the map

$$
\pi: \bar{M}_{g, 0}\left(X \times \mathbb{P}^{1},(\beta, d)\right) \rightarrow \bar{M}_{g, 0}(X, \beta)
$$

induced by the projection map π_{1}.
For $g \geq 0, \beta \in H_{2}(X, \mathbb{Z})$, the Gromov-Witten series of Y is defined by

$$
\begin{equation*}
\mathcal{F}_{g, \beta}^{Y}(q):=\sum_{d \geq 0} q^{d} \pi_{*}\left(\left[\bar{M}_{g, 0}\left(X \times \mathbb{P}^{1},(\beta, d)\right)\right]^{\mathrm{vir}} \cap e\left(-R^{\bullet} p_{*} f^{*} E\right)\right) \in \mathcal{R}_{X, S}[[q]] \tag{1}
\end{equation*}
$$

where $p: \mathcal{C} \rightarrow \bar{M}_{g, 0}\left(X \times \mathbb{P}^{1},(\beta, d)\right)$ is the universal curve and $f: \mathcal{C} \rightarrow X \times \mathbb{P}^{1}$ is the universal map. The first result of the paper is the symmetric properties of the Gromov-Witten classes of Y.

Theorem 1. For the Gromov-Witten classes of Y, we have
(i) $\mathcal{F}_{g, \beta}^{Y}(q) \in \mathcal{R}_{X, S}\left[q,(1-q)^{-1}\right]$,
(ii) $\mathcal{F}_{g, \beta}^{Y}(1 / q)=(-q)^{\int_{\beta} c_{1}(S)} \cdot \mathcal{F}_{g, \beta}^{Y}(q)$.

1.3. Gromov-Witten theory of \mathbb{P}^{1} twisted by $\mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$

Let X be a smooth algebraic variety, and let S be a line bundle on X. Let π_{i} be the projections

$$
\pi_{1}: X \times \mathbb{P}^{1} \rightarrow X, \pi_{2}: X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}
$$

Denote by Z the total space of the line bundle

$$
F:=\left(\pi_{1}^{*}\left(S^{-1}\right) \otimes \pi_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)^{\oplus 2}
$$

on $X \times \mathbb{P}^{1}$. Let π be the map

$$
\pi: \bar{M}_{g, 0}\left(X \times \mathbb{P}^{1},(\beta, d)\right) \rightarrow \bar{M}_{g, 0}(X, \beta)
$$

induced by the projection map π_{1}. Note that π depends on the genus and number of markings, but we will use the same notation for π when the domain of π is clear from the context. Here we need to consider the moduli space with the markings in Section 2.1.

For $g \geq 0, \beta \in H_{2}(X, \mathbb{Z})$, the Gromov-Witten classes of Z is defined by

$$
\mathcal{F}_{g, \beta}^{Z}(q):=\sum_{d \geq 0} q^{d} \pi_{*}\left(\left[\bar{M}_{g, 0}\left(X \times \mathbb{P}^{1},(\beta, d)\right)\right]^{\mathrm{vir}} \cap e\left(-R^{\bullet} p_{*} f^{*} F\right)\right) \in \mathcal{R}_{X, S}[[q]]
$$

where $p: \mathcal{C} \rightarrow \bar{M}_{g, n}\left(X \times \mathbb{P}^{1},(\beta, d)\right)$ is the universal curve and $f: \mathcal{C} \rightarrow X \times \mathbb{P}^{1}$ is the universal map. The second result of the paper is the following symmetric properties of the Gromov-Witten classes of Z.
Theorem 2. For the Gromov-Witten classes of Z, we have
(i) $\mathcal{F}_{g, \beta}^{Z}(q) \in \mathcal{R}_{X, S}\left[q,(1-q)^{-1}\right]$,
(ii) $\mathcal{F}_{g, \beta}^{Z}(1 / q)=(-q)^{\int_{\beta} c_{1}(S)} \cdot \mathcal{F}_{g, \beta}^{Z}(q)$.

Acknowledgments. I thank T. Buelles and M. Moreira for sharing their work on local Hirzebruch surfaces. I am very grateful to H. Iritani for the helpful comments about the oscillatory integrals.

2. Gromov-Witten theory of \mathbb{P}^{1} twisted by $\mathcal{O}_{\mathbb{P}^{1}}(-2)$

2.1. Stable quotient and wall crossing formula

We review here the stable quotient invariants and wall crossing formula [3,16].

Let $\left(C, p_{1}, \ldots, p_{n}\right)$ be an n-pointed quasi-stable curve:

- C is a reduced, connected, complete scheme of dimension one with at worst nodal singularities,
- the markings p_{i} are distinct and lie in the non-singular locus of C.

Let q be a quotient of the rank 2 trivial bundle on C,

$$
\mathbb{C}^{2} \otimes \mathcal{O}_{C} \xrightarrow{q} Q \rightarrow 0
$$

We say q is a quasi-stable quotient if the quotient sheaf Q is locally free at the nodes and markings of C. Quasi-stability of q implies the associated kernel,

$$
0 \rightarrow T \rightarrow \mathbb{C}^{2} \otimes \mathcal{C} \xrightarrow{q} Q \rightarrow 0
$$

is a locally free sheaf on C. We assume that the rank of T is one. Let $\left(C, p_{1}, \ldots, p_{n}\right)$ be an n-pointed quasi-stable curve equipped with a quasi-stable quotient q. The data $\left(C, p_{1}, \ldots, p_{n}, q\right)$ determine a stable quotient if the \mathbb{Q}-line bundle

$$
\omega_{C}\left(p_{1}+\cdots+p_{n}\right) \otimes\left(T^{*}\right)^{\otimes \epsilon}
$$

is ample on C for every positive $\epsilon \in \mathbb{Q}$.
Denote by $\bar{Q}_{g, n}^{\infty, 0+}\left(X \times \mathbb{P}^{1},(\beta, d)\right)$ the moduli space parameterizing the data

$$
\left(C, p_{1}, \ldots, p_{n}, 0 \rightarrow S \rightarrow \mathbb{C}^{2} \otimes \mathcal{O}_{C} \xrightarrow{q} Q \rightarrow 0, f: C \rightarrow X\right)
$$

where q is a quasi-stable quotient with $\operatorname{deg}(T)=-d$ and f is a quasi-stable map with $\operatorname{deg}(f)=\beta \in H_{2}(X, \mathbb{Z})$ such that either q is a stable quotient or f is a stable map.

Combining the usual argument in the moduli space of stable maps and the argument in [16], we get the following results.

Theorem 3. $\bar{Q}_{g, n}^{\infty, 0+}\left(X \times \mathbb{P}^{1},(\beta, d)\right)$ is a separated and proper Delinge-Mumford stack of finite type over \mathbb{C}. Moreover it admits a perfect obstruction theory.

Over the moduli space $\bar{Q}_{g, n}^{\infty, 0+}\left(X \times \mathbb{P}^{1},(\beta, d)\right)$, there is a universal n-pointed curve

$$
p: \mathcal{C} \rightarrow \bar{Q}_{g, n}^{\infty, 0+}\left(X \times \mathbb{P}^{1},(\beta, d)\right)
$$

with a universal quotient

$$
0 \rightarrow \mathcal{T} \rightarrow \mathbb{C}^{2} \otimes \mathcal{O}_{\mathcal{C}} \rightarrow \mathcal{Q} \rightarrow 0
$$

The subsheaf \mathcal{T} is locally free on \mathcal{C} because of the stability condition. We have the natural map

$$
\pi: \bar{Q}_{g, 0}^{\infty, 0+}\left(X \times \mathbb{P}^{1},(\beta, d)\right) \rightarrow \bar{M}_{g, 0}(X, \beta)
$$

We define the stable quotient series by
$\mathcal{F}_{g, \beta}^{\mathrm{SQ}}(q):=\sum_{d \geq 0} q^{d} \pi_{*}\left(\left[\bar{Q}_{g, 0}^{\infty, 0+}\left(X \times \mathbb{P}^{1},(\beta, d)\right)\right]^{\mathrm{vir}} \cap e\left(-R^{\bullet} p_{*}\left(f^{*}\left(S^{-1}\right) \otimes \mathcal{T}^{\otimes 2}\right)\right)\right)$,
where $p: \mathcal{C} \rightarrow \bar{M}_{g, n}\left(X \times \mathbb{P}^{1},(\beta, d)\right)$ is the universal curve and $f: \mathcal{C} \rightarrow X \times \mathbb{P}^{1}$ is the universal map.

Recall the Gromov-Witten series $\mathcal{F}_{g, \beta}^{Y}$ of Y defined by (1). More generally, we define the Gromov-Witten series of Y with insertion,

$$
\begin{aligned}
& \mathcal{F}_{g, n, \beta}^{Y}\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right](q) \\
:= & \sum_{d \geq 0} q^{d} \pi_{*}\left(\left[\bar{M}_{g, n}\left(X \times \mathbb{P}^{1},(\beta, d)\right)\right]^{\mathrm{vir}} \cap e\left(-R^{\bullet} \pi_{*} f^{*} E\right) \cup \prod_{k=1}^{n} \operatorname{ev}^{*}\left(\gamma_{k}\right)\right),
\end{aligned}
$$

where $\gamma_{k} \in H^{*}\left(X \times \mathbb{P}^{1}\right)$. Here $\pi: \bar{M}_{g, n}\left(X \times \mathbb{P}^{1},(\beta, d)\right) \rightarrow \bar{M}_{g, n}(X, \beta)$ and note that $\mathcal{F}_{g, 0, \beta}^{Y}=\mathcal{F}_{g, \beta}^{Y}$. Let $H \in H^{2}\left(\mathbb{P}^{1}\right)$ be the hyperplane class of \mathbb{P}^{1} and $B=c_{1}(S) \in H^{2}(X)$. The relationship between the Gromov-Witten and stable quotient series can be proved using the argument in the proof of Theorem 1.3.2 in [3]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{F}_{g, \beta}^{Y}\left[I_{1}(q)\left(H+\frac{1}{2} B\right), \ldots, I_{1}(q)\left(H+\frac{1}{2} B\right)\right](q)=\mathcal{F}_{g, \beta}^{\mathrm{SQ}}(q), \tag{2}
\end{equation*}
$$

where $I_{1}(q)$ is defined by

$$
I_{1}(q)=-2 \log (1+\sqrt{1-4 q})+2 \log 2
$$

2.2. Localizations

We fix a torus action $\mathrm{T}=\left(\mathbb{C}^{*}\right)^{2}$ on \mathbb{P}^{1} with weights λ_{0}, λ_{1} on the vector space \mathbb{C}^{2}. The T-weight on the fiber over p_{i} of the canonical bundle $\mathcal{O}_{\mathbb{P}^{1}}(-2) \rightarrow$ \mathbb{P}^{1} is $-2 \lambda_{i}$. We use the specialization

$$
\lambda_{0}=1, \quad \lambda_{1}=-1
$$

Proposition 4. For the quasimap invariants of $\mathcal{O}_{\mathbb{P}^{1}}(-2)$, we have

$$
\mathcal{F}_{g, \beta}^{\mathrm{SQ}}(q) \in \mathcal{R}_{X, S}\left[(1-4 q)^{-1}\right]
$$

Proof. Define the I-function

$$
\mathbb{I}:=\sum_{d=0}^{\infty} q^{d} \frac{\prod_{k=0}^{2 d-1}(-2 H-B-k z)}{\prod_{i=0}^{1} \prod_{k=1}^{d}\left(H-\lambda_{i}+k z\right)} .
$$

Define

$$
\begin{align*}
S(1) & =\mathbb{I} \\
\mathbb{S}(H) & =\frac{\mathrm{M} \mathbb{S}(1)}{L_{0}}-\left(\frac{1}{2}-\frac{1}{L_{0}}\right) \mathbb{S}(1) \tag{3}
\end{align*}
$$

where $\mathrm{M}:=H+z \frac{q d}{d q}$ and $L_{0}(q)=(1-4 q)^{-1 / 2}$.
The series

$$
\mathbb{S}_{i}(1):=\left.\mathbb{S}\right|_{H=\lambda_{i}}, \mathbb{S}_{i}(H):=\left.\mathbb{S}(H)\right|_{H=\lambda_{i}}
$$

have the following asymptotic expansions:

$$
\begin{align*}
& S_{i}(1)=e^{\frac{\sum_{k=0}^{\infty} \mu_{k, i} B^{k}}{z}}\left(\sum_{j \geq 0, k \geq 0} R_{0 j k, i} B^{k} z^{j}\right), \tag{4}\\
& \mathbb{S}_{i}(H)=e^{\frac{\sum_{k=0}^{\infty} \mu_{k, i} B^{k}}{z}}\left(\sum_{j \geq 0, k \geq 0} R_{1 j k, i} B^{k} z^{j}\right),
\end{align*}
$$

with series $\mu_{k, i}, R_{l j k, i} \in \mathbb{Q}[[q]]$. The first equality can be obtained by directly analyzing the I-function ([17, Lemma 1]). See [12, Lemma 41] for a geometric proof. The second equality can be obtained from (3).

Define the series $L_{k, i}$ for $k \in \mathbb{Z}_{\geq 0}$ by

$$
\begin{align*}
& L_{0, i}=\mathrm{D} \mu_{0, i}+\lambda_{i} \\
& L_{k, i}=\mathrm{D} \mu_{k, i} \text { for } k \geq 1 \tag{5}
\end{align*}
$$

where $\mathrm{D}:=\frac{q d}{d q}$. We have the following result for the series $L_{k, i}, R_{l j k, i}$.
Lemma 5. For $k, l, j \geq 0$ and $i=0$, 1 , we have

$$
L_{k, i}, R_{l j k, i} \in \mathbb{Q}\left[L_{0}\right]
$$

Proof. The function II satisfies the following Picard-Fuchs equation,

$$
\begin{equation*}
\left(\left(\mathrm{M}-\lambda_{0}\right)\left(\mathrm{M}-\lambda_{1}\right)-q(-2 \mathrm{M}-B)(-2 \mathrm{M}-B-z)\right) \mathbb{I}=0 \tag{6}
\end{equation*}
$$

The lemma follows by applying the asymptotic forms (4) to above equation. The coefficient of z^{0} in (6) is calculated as

$$
\begin{equation*}
(1-4 q) \mathcal{L}_{B, i}^{2}-8 q B \mathcal{L}_{B, i}-\left(1+4 q B^{2}\right)=0 \tag{7}
\end{equation*}
$$

where we used the notation

$$
\mathcal{L}_{B, i}:=L_{0, i}+L_{1, i} B+L_{2, i} B^{2}+\cdots
$$

The coefficient of B^{0} in (7) gives

$$
\begin{equation*}
(1-4 q) L_{0, i}^{2}-1=0 \tag{8}
\end{equation*}
$$

Therefore we obtain

$$
L_{0, i}=(-1)^{i}\left(\frac{1}{1-4 q}\right)^{1 / 2}:=(-1)^{i} L_{0}
$$

Note that the choice of two roots of the equation (8) corresponds to the choice of two fixed points in \mathbb{P}^{1}. The coefficient of B in (7) gives

$$
\begin{equation*}
2 L_{0, i} L_{1, i}(1-4 q)-8 q L_{0, i}=0 \tag{9}
\end{equation*}
$$

The coefficient of B^{2} in (7) gives

$$
\left(L_{1, i}^{2}+2 L_{2, i} L_{0, i}\right)(1-4 q)-4 q-8 q L_{1, i}=0
$$

Therefore we obtain the result of Lemma 5 for $L_{1, i}$ and $L_{2, i}$ from above two equations. For $k \geq 3$, the coefficient of B^{k} in (7) gives

$$
\left(\sum_{j=0}^{k} L_{j, i} L_{k-j, i}\right)(1-4 q)-8 q L_{k-1, i}=0 .
$$

Therefore we obtain the result of Lemma 5 for $L_{k, i}$ inductively on k. Similarly we can calculate the coefficient of z^{j} in the Picard-Fuchs equation (6) for $j \geq 1$ to obtain the result for $R_{0 j k, i}$. Similar calculations were performed explicitly in [17, Theorem 3]. The result of Lemma 5 for $R_{1 j k, i}$ follows easily from the previous results for $L_{k, i}, R_{0 j k, i}$, the definition of the series $R_{1 j k, i}$ in (4) and the definition of $\$(H)$ in (3).

Define the series $Q_{l j k, i}$ by the equations

$$
\begin{aligned}
\sum_{j \geq 0, k \geq 0} Q_{l j k, i} B^{k} z^{j}= & {\left[(2 \lambda _ { i } (- 2 \lambda _ { i } - B)) ^ { - \frac { 1 } { 2 } } \operatorname { e x p } \left(\left(\sum_{k=2}^{\infty} \mu_{k, i} B^{k}-B\right.\right.\right.} \\
& \left.\left.+\left(B+2 \lambda_{i}\right) \log \left(1+\frac{B}{2 \lambda_{i}}\right)\right) / z\right) \exp \left(\sum_{k=1}^{\infty}-\frac{N_{k, i} B_{k+1}}{k(k+1)} z^{k}\right) \\
& \left.\sum_{j \geq 0, k \geq 0} R_{l j k, i} B^{k} z^{j}\right]_{+},
\end{aligned}
$$

where $N_{k, i}=\left(\frac{1}{\lambda_{i}-\lambda_{i+1}}\right)^{k}+\left(\frac{1}{-2 \lambda_{i}-B}\right)^{k}$ and B_{k} are the Bernoulli numbers. For a Laurent series F in $z,[F]_{+}$is the non-negative part of F.

Using the localization formula $[7,12,14]$, we have

$$
\begin{equation*}
\mathcal{F}_{g}^{\mathrm{SQ}}=\sum_{\Gamma \in \mathrm{G}_{g, 0, \beta}^{\mathrm{Loc}}(X)} \frac{1}{\operatorname{Aut}(\Gamma)}\left[\Gamma, \prod_{v \in \mathrm{~V}} \kappa_{v} \prod_{e \in \mathrm{E}} \Delta_{e}\right] \in \mathcal{R}_{X, S}[[q]], \tag{10}
\end{equation*}
$$

where

- for $v \in \mathrm{~V}$ let

$$
\kappa_{v}=\operatorname{Vert}_{v} \cdot \kappa\left(T-T \sum_{k \geq 0, j \geq 0} Q_{0 j k, \mathrm{p}(v)} B^{k}(-T)^{j}\right)
$$

with

$$
\operatorname{Vert}_{v}=\left[\exp \left(\mu_{1, \mathrm{p}(v)}+\log \left(-2 \lambda_{\mathrm{p}(v)}\right)\right)\right]^{\int_{\mathrm{d}(v)} B}
$$

- for $e \in \mathbf{E}$, let

$$
\begin{aligned}
\Delta_{e}= & \frac{1}{\psi^{\prime}+\psi^{\prime \prime}}\left[-2 \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathrm{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathrm{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j}\right. \\
& -B \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathrm{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathrm{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j} \\
& -B \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathrm{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathrm{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j} \\
& \left.-2 \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathrm{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathrm{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j}\right],
\end{aligned}
$$

where $\psi^{\prime}, \psi^{\prime \prime}$ are the ψ-classes corresponding to the half-edges.
See the appendix for the definition of $\mathrm{G}_{g, 0, \beta}^{\mathrm{Loc}}(X)$. For a power series with vanishing constant and linear terms in X,

$$
f(T, B) \in\left(T^{2}, T B\right) \mathbb{Q}[B][[T]]
$$

we define

$$
\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} p_{m *}\left(f\left(\psi_{n+1}, \mathrm{ev}_{n+1}^{*}(B)\right) \cdots f\left(\psi_{n+m}, \mathrm{ev}_{n+m}^{*}(B)\right)\right) \in R^{*}\left(\bar{M}_{g, n}(X, \beta)\right) .
$$

From the formula (10) and Lemma 5, we conclude that

$$
\mathcal{F}_{g}^{\mathrm{SQ}} \in \mathcal{R}_{X, S}\left[L_{0}\right]
$$

Moreover it is easy to check that only $L_{0}^{2 k}$ terms are non-zero for $k \in \mathbb{Z}_{\geq 0}$ in the formula (10). This is due to the fact that $R_{l j k, i}$ for $i=0,1$ in the proof of Lemma 5 satisfy the same differential equation with the choice of two initial conditions $L_{0, i}=(-1)^{i} L_{0}$ and the fact that the localization formula for $\mathcal{F}_{g}^{\mathrm{SQ}}$ in (10) is symmetric with respect to the two fixed points in \mathbb{P}^{1}. The proof of the proposition follows from $L_{0}(q)^{2}=(1-4 q)^{-1}$.

2.3. Proof of Theorem 1

Recall that

$$
I_{1}(q)=2 \log 2-2 \log (1+\sqrt{1-4 q})
$$

If we define x by

$$
x=q \cdot \exp (2 \log 2-2 \log (1+\sqrt{1-4 q}))
$$

we have

$$
q=\frac{x}{(1+x)^{2}} .
$$

Therefore (2) yields the following equality:

$$
\begin{equation*}
\mathcal{F}_{g, \beta}^{Y}(x)=\mathcal{F}_{g, \beta}^{\mathrm{SQ}}\left(x /(1+x)^{2}\right) \cdot(1 /(1+x))^{\int_{\beta} c_{1}(S)} \tag{11}
\end{equation*}
$$

Since we have

$$
\frac{1}{1-4 q}=\left(\frac{1+x}{1-x}\right)^{2}
$$

the proof of Theorem 1 follows from the above equation and Proposition 4. Note that the factor $(1 /(1+x))^{\int_{\beta} c_{1}(S)}$ in (11) is canceled with Vert ${ }_{v}=\left[\exp \left(\mu_{1, \mathfrak{p}(v)}+\right.\right.$ $\left.\left.\log \left(-2 \lambda_{\mathbf{p}(v)}\right)\right)\right]^{\int_{\mathrm{d}(v)}{ }^{B}}$ in the formula (10), since we can easily calculate

$$
\exp \left(\mu_{1, \mathrm{p}(v)}\right)=\frac{1}{1-4 q}
$$

from the equation (9).

3. Gromov-Witten theory of \mathbb{P}^{1} twisted by $\mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$

3.1. Multiple cover formula

Let $\pi: U \rightarrow \bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)$ be the universal family over the moduli space. Let $f: U \rightarrow \mathbb{P}^{1}$ be the universal evaluation map. For $N:=\mathcal{O}(-1) \oplus \mathcal{O}(-1)$, $R^{1} \pi_{*} f^{*} N$ is a vector bundle on $\bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)$. The following result was obtained using torus localization and Hodge integrals over the moduli space of curves $[5,8]$.

$$
\begin{equation*}
\int_{\left.\left[\bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)\right]\right]^{\mathrm{vir}}} e\left(R^{1} \pi_{*} f^{*} N\right)=\frac{\left|B_{2 g}\right| \cdot d^{2 g-3}}{2 g \cdot(2 g-2)!} \tag{12}
\end{equation*}
$$

Define the Gromov-Witten series of $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ by

$$
\mathcal{F}_{g}(q):=\sum_{d=0}^{\infty} q^{d} \int_{\left[\bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)\right]} e\left(R^{1} \pi_{*} f^{*} N\right) .
$$

From the equation (12) and the following equations

$$
\mathrm{D}^{m}\left(\frac{1}{1-q}\right)=\sum_{k=1}^{\infty} k^{m} q^{k}
$$

we can easily prove

$$
\mathcal{F}_{g}(1 / q)=\mathcal{F}_{g}(q)
$$

For the generalization of the result, we give another proof of the above equation.
Proposition 6. The Gromov-Witten series of $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ satisfies

$$
\mathcal{F}_{g}(1 / q)=\mathcal{F}_{g}(q)
$$

Proof. We fix a torus action $\mathrm{T}=\left(\mathbb{C}^{*}\right)^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ on $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ with weights $\lambda_{0}, \lambda_{1}, \gamma_{0}, \gamma_{1}$, so that the associated I-function is

$$
\begin{equation*}
\mathbb{I}:=\sum_{d=0}^{\infty} q^{d} \frac{\prod_{i=0}^{1} \prod_{k=0}^{d-1}\left(-H-k z-\gamma_{i}\right)}{\prod_{i=0}^{1} \prod_{k=1}^{d}\left(H+k z-\lambda_{i}\right)} \tag{13}
\end{equation*}
$$

where $H \in H^{2}\left(\mathbb{P}^{1}\right)$ is the hyperplane class. Here the first $\left(\mathbb{C}^{*}\right)^{2}$ in T acts coordinate-wisely on \mathbb{P}^{1} and the second $\left(\mathbb{C}^{*}\right)^{2}$ acts coordinate-wisely on the fiber $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$. With the induced T-action on $\bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)$, define the T-equivariant Gromov-Witten series of $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ by

$$
\mathcal{F}_{g}^{\top}(q):=\sum_{d=0}^{\infty} q^{d} \int_{\left.\left[\bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)\right]\right]^{\mathrm{vir}, \mathrm{~T}}} e^{\mathrm{T}}\left(R^{1} \pi_{*} f^{*} N\right)
$$

Here, $\left[\bar{M}_{g, 0}\left(\mathbb{P}^{1}, d\right)\right]^{\text {vir }}$ is the corresponding equivariant virtual class and e^{\top} is the equivariant Euler class. Note that $\mathcal{F}^{\top}(q)$ does not depend on s and t, since the corresponding virtual dimension is zero. Therefore we have the following equality:

$$
\mathcal{F}_{g}(q)=\mathcal{F}_{g}^{\top}(q)
$$

We use the specialization

$$
\begin{equation*}
\lambda_{i}=(-1)^{i} s, \quad \gamma_{i}=(-1)^{i} t . \tag{14}
\end{equation*}
$$

Define

$$
\mathbb{S}(1)=\mathbb{I}, \quad S(H)=\mathrm{M} \mathbb{S}(1)
$$

where $\mathrm{M}:=H+z \frac{q d}{d q}$. The series

$$
\mathbb{S}_{i}(1):=\left.\mathbb{S}\right|_{H=\lambda_{i}}, \mathbb{S}_{i}(H):=\left.\mathbb{S}(H)\right|_{H=\lambda_{i}}
$$

have the following asymptotic expansions:

$$
\begin{align*}
S_{i}(1) & =e^{\frac{\mu_{i}}{z}}\left(R_{00, i}+R_{01, i} z+R_{02, i} z^{2}+\cdots\right), \tag{15}\\
\mathbb{S}_{i}(H) & =e^{\frac{\mu_{i}}{z}}\left(R_{10, i}+R_{11, i} z+R_{12, i} z^{2}+\cdots\right),
\end{align*}
$$

with series $\mu_{i}, R_{l j, i} \in \mathbb{Q}(s, t)[[q]]$. We have the following result for the series $\mu_{i}, R_{l j, i}$.

Lemma 7. For $k \geq 0, l=0,1$ and $i=0,1$, we have

$$
(-1)^{i} s+\mathrm{D} \mu_{i}=(-1)^{i} L, \quad R_{l j, i} \in \mathbb{Q}(s, t)\left[L^{1 / 2}, L^{-1 / 2}\right],
$$

where $L(q)=\sqrt{\frac{s^{2}-q t^{2}}{1-q}}$.
Proof. The function II satisfies the following Picard-Fuchs equation

$$
\left(\left(\mathrm{M}-\lambda_{0}\right)\left(\mathrm{M}-\lambda_{1}\right)-q\left(-\mathrm{M}-\gamma_{0}\right)\left(-\mathrm{M}-\gamma_{1}\right)\right) \mathbb{I}=0
$$

or equivalently,

$$
\begin{equation*}
\left[\left(\left(\mathrm{M}-\lambda_{0}\right)\left(\mathrm{M}-\lambda_{1}\right)-q\left(-\mathrm{M}-\gamma_{0}\right)\left(-\mathrm{M}-\gamma_{1}\right)\right) \mathrm{I}\right] \mathrm{I}^{-1}=0 \tag{16}
\end{equation*}
$$

The lemma will follow by applying the asymptotic forms (15) to above equation. Instead of the asymptotic expansion (15) of \mathbb{I}, we use the following exponential form:

$$
\begin{equation*}
\left.\mathbb{I}\right|_{H=\lambda_{i}}=\exp \left(\frac{\mu_{i}+a_{0, i} z+a_{1, i} z^{2}+\cdots}{z}\right) \tag{17}
\end{equation*}
$$

The evaluations of $R_{0 k, i}$ can be obtained from those of $a_{k, i}$ by the equation

$$
\begin{equation*}
e^{\frac{\mu_{i}}{z}}\left(R_{00, i}+R_{01, i} z+R_{02, i} z^{2}+\cdots\right)=\exp \left(\frac{\mu_{i}+a_{0, i} z+a_{1, i} z^{2}+\cdots}{z}\right) \tag{18}
\end{equation*}
$$

If we apply (17) to the Picard-Fuchs equation (16), the coefficient of z^{0} in the equation is given by

$$
(1-q)\left(\lambda_{i}+\mathrm{D} \mu_{i}\right)^{2}-s^{2}+q t^{2}=0
$$

Therefore μ_{i} satisfies

$$
\lambda_{i}+\mathrm{D} \mu_{i}=(-1)^{i} L
$$

where L is the root of the polynomial

$$
(1-q) \mathcal{L}^{2}-s^{2}+q t^{2}=0
$$

with $\left.L\right|_{q=0}=s$. From the above equation we obtain

$$
\begin{aligned}
q & =\frac{L^{2}-s^{2}}{L^{2}-t^{2}} \\
\mathrm{D} L & =\frac{\left(L^{2}-s^{2}\right)\left(L^{2}-t^{2}\right)}{2 L\left(s^{2}-t^{2}\right)}
\end{aligned}
$$

The coefficient of z in the equation (16) is given by

$$
(1-q)\left(2 L \mathrm{D} a_{0, i}+\mathrm{D}\left((-1)^{i} L\right)\right)=0
$$

Therefore we calculate

$$
\mathrm{D} a_{0, i}=-\frac{\left(L^{2}-s^{2}\right)\left(L^{2}-t^{2}\right)}{4 L^{2}\left(s^{2}-t^{2}\right)}
$$

By solving above differential equation with the initial condition $\left.a_{0, i}\right|_{q=0}=0$, we obtain

$$
a_{0, i}=-\frac{\log \left((-1)^{i} L / s\right)}{2}
$$

From the equation (18) we obtain

$$
R_{00, i}=\left(\frac{s}{(-1)^{i} L}\right)^{1 / 2}
$$

For $k \geq 2$, the coefficient of z^{k} in the equation (16) is given by

$$
(1-q)\left(2 L \mathrm{D} a_{k-1, i}+\mathrm{D}^{2} a_{k-2, i}+\sum_{j=0}^{k-2} \mathrm{D} a_{j, i} \mathrm{D} a_{k-2-j, i}\right)=0
$$

We can inductively solve the differential equation

$$
\begin{equation*}
2 L \mathrm{D} a_{k-1, i}+\mathrm{D}^{2} a_{k-2, i}+\sum_{j=0}^{k-2} \mathrm{D} a_{j, i} \mathrm{D} a_{k-2-j, i}=0 \tag{19}
\end{equation*}
$$

with the initial conditions $a_{k, i}=0$ for $k \geq 1$ to obtain each $a_{k, i}$ for $k \geq 1$ as a Laurent polynomial in L up to possible extra factor $\log L$. This argument yields weaker result,

$$
a_{k, i} \in \mathbb{Q}(s, t)\left[L, L^{-1}, \log L\right]
$$

and hence

$$
R_{l j, i} \in \mathbb{Q}(s, t)\left[L^{1 / 2}, L^{-1 / 2}, \log L\right]
$$

by the equation (18).
To prove the result

$$
R_{l j, i} \in \mathbb{Q}(s, t)\left[L^{1 / 2}, L^{-1 / 2}\right]
$$

we use the saddle point method for finding asymptotic behaviour of the oscillatory integral occurring in Givental's equivariant mirror [6]. This argument was explained by Iritani. See [15, Appendix] for the introduction to this method. Similar argument was also used in [9, Appendix A.6]. Here we follow the notation of [15, Appendix]. The equivariant mirror for local \mathbb{P}^{1} was introduced by Givental as the Landau-Ginzburg potential

$$
W\left(w_{0}, w_{1}, w_{2}, w_{3}\right)=w_{0}+w_{1}+w_{2}+w_{3}-t \log \left(w_{1} / w_{2}\right)+s \log \left(q w_{3} / w_{0}\right)
$$

defined on the family of affine varieties

$$
M_{q}=\left\{\left(w_{0}, w_{1}, w_{2}, w_{3}\right) \in \mathbb{C}^{4}: w_{0} w_{3}=q w_{1} w_{2}\right\}
$$

The associated oscillatory integral is defined by

$$
\begin{equation*}
\mathcal{I}=\int_{\Gamma \subset M_{q}} e^{W / z} \omega \tag{20}
\end{equation*}
$$

where ω is the (meromorphic) volume form on M_{q} :

$$
\omega=\frac{d \log w_{0} \wedge d \log w_{1} \wedge d \log w_{2} \wedge d \log w_{3}}{d \log q}
$$

The integral in (20) is along 3-cycles Γ through a specific critical point of the Landau-Ginzburg potential W which can be constructed via Morse theory of the real part of W / z. A relationship between the formal asymptotic expansion of the mirror oscillatory integral (20) and the equivariant I-function (13) was proven in [4, Proposition 6.9]. Denote by

$$
\operatorname{Asym}_{\mathrm{cr}_{i}}\left(e^{W / z} \omega\right)
$$

be the formal asymptotic expansion of (20) at the critical point cr_{i}. Applying [4, Proposition 6.9] to our settings, we obtain

$$
e^{W\left(\operatorname{cr}_{i}\right) / z} \cdot \operatorname{Asym}_{\operatorname{cr}_{i}}\left(e^{W / z} \omega\right)=e^{\frac{\mu_{i}}{z}} \cdot\left(1+\frac{R_{01, i}}{R_{00, i}} z+\frac{R_{02, i}}{R_{00, i}} z^{2}+\cdots\right)
$$

Now the asymptotic behaviour of the oscillatory integral (20) can be explicitly calculated via the saddle point method as follows:

$$
\begin{equation*}
\operatorname{Asym}_{\operatorname{cr}_{i}}\left(e^{W / z} \omega\right)=\frac{1}{\sqrt{\operatorname{det}\left(h_{j, k}\right)}}\left[e^{-\frac{z}{2} \sum_{j, k} h^{j, k} \partial_{j} \partial_{k}} e^{W \geq 3}\right]_{t=\mathrm{cr}_{i}} \tag{21}
\end{equation*}
$$

where $h_{j, k}=\partial_{j} \partial_{k} W\left(\mathrm{cr}_{i}\right)$ is the Hessian matrix, $\left(h^{j, k}\right)$ are the coefficients of the matrix inverse to $\left(h_{j, k}\right), \partial_{j}=\frac{\partial}{\partial w_{j}}$, and

$$
W_{\geq 3}(w)=W(w)-W\left(\operatorname{cr}_{i}\right)-\frac{1}{2} \sum_{j, k} h_{j, k}\left(w_{j}-\operatorname{cr}_{i}^{j}\right)\left(w_{k}-\operatorname{cr}_{i}^{k}\right)
$$

See [15, Appendix A.1] for more explanations. The coordinates (a, b, u) are more convenient for the calculations,

$$
w_{0}=u, w_{1}=a u, w_{2}=b u, w_{3}=q a b u .
$$

Then we can rewrite

$$
W(a, b, u)=u(1+a+b+q a b)-t \log (a / b)+s \log (q a b),
$$

and its critical points are given by

$$
\begin{aligned}
u & =s-(\pm L), \\
u a & =t+(\pm L), \\
u b & =-t+(\pm L), \\
u a b q & =-s-(\pm L) .
\end{aligned}
$$

Note that the choice of the root $(\pm L)$ corresponds to the choice of two critical points. The Hessian of W with respect to the logarithmic coordinates $(\log a, \log b, \log u)$ at this critical point is given by

$$
\operatorname{Hess}(W)=2 L\left(t^{2}-s^{2}\right)
$$

Therefore the formal asymptotic expansion (21) of the oscillatory integral (20) have the coefficients (which correspond to the normalized forms $R_{0 j, i} / R_{00, i}$) lying in the ring $\mathbb{Q}(s, t)\left[L, L^{-1}\right]$. This concludes the proof of the statement for $R_{0 k, i}$. The statement for $R_{1 k, i}$ follows easily from the definition of $\mathbb{S}(H):=$ M S(1).

Define the series $Q_{l j, i}$ by the equations

$$
\begin{equation*}
\sum_{j=0}^{\infty} Q_{l j, i} z^{j}=\frac{1}{R_{00, i}} \exp \left(\sum_{k=0}^{\infty}-\frac{N_{j, i} B_{j+1}}{j(j+1)} z^{j}\right) \sum_{j=0} R_{l j, i} z^{j} \tag{22}
\end{equation*}
$$

where $N_{j, i}=\left(\frac{1}{\lambda_{i}-\lambda_{i+1}}\right)^{j}+\left(\frac{1}{-\lambda_{i}-\gamma_{0}}\right)^{j}+\left(\frac{1}{-\lambda_{i}-\gamma_{1}}\right)^{j}$ and B_{j} are the Bernoulli numbers.

Lemma 8. For $j \geq 0, l=0,1$ and $i=0,1$, we have

$$
Q_{l j, i}=\sum_{m=-3 j}^{j} \frac{q_{l j m}}{\left(s^{2}-t^{2}\right)^{j}}\left((-1)^{i} L\right)^{m+l}
$$

where $q_{l j m} \in \mathbb{Q}[s, t]$ satisfies $q_{l j m}(s, t)=q_{l j m}(t, s)$.
Proof. Recall we use the specialization (14). In the proof of Lemma 7, the differential equation (19) do not depend on s and t. Since

$$
\mathrm{D} L=\frac{\left(L^{2}-s^{2}\right)\left(L^{2}-t^{2}\right)}{2 L\left(s^{2}-t^{2}\right)}
$$

we conclude that $a_{k, i}$ have same forms as in the statement of Lemma 8. Then the statement of Lemma 8 for $Q_{0 j, i}$ follows easily, since $Q_{0 j, i}$ and $a_{j, i}$ are related by the equations (18) and (22). The statement for $Q_{1 j, i}$ also follows easily from the definition of $R_{1 j, i}$ and $Q_{1 j, i}$. Note that the factor $(-1)^{i}$ in the equation of Lemma 8 is due to the fact that $a_{j, i}$ for $i=0,1$ are the solutions of same differential equation (19) with different initial conditions. The choice of initial conditions corresponds to the choice of two roots L or $-L$ of the defining polynomial

$$
(1-q) \mathcal{L}^{2}-s^{2}+q t^{2}=0
$$

Using the localization formula $[7,12,14]$, we have

$$
\begin{equation*}
\mathcal{F}_{g}^{\top}=\sum_{\Gamma \in \mathrm{G}_{g, 0}^{\mathrm{Loc}}} \frac{1}{\operatorname{Aut}(\Gamma)}\left[\Gamma, \prod_{v \in \mathrm{~V}} \kappa_{v} \prod_{e \in \mathrm{E}} \Delta_{e}\right] \tag{23}
\end{equation*}
$$

where

- for $v \in \mathrm{~V}$ let

$$
\kappa_{v}=\kappa\left(T-T \sum_{j=0}^{\infty} Q_{0 j, \mathrm{p}(v)}(-T)^{j}\right)
$$

- for $e \in \mathbf{E}$, let

$$
\begin{aligned}
\Delta=\frac{s^{2}-t^{2}}{\psi^{\prime}+\psi^{\prime \prime}} & {\left[\sum_{j=0}^{\infty} Q_{0 j, \mathfrak{p}\left(e_{1}\right)}\left(-\psi^{\prime}\right)^{j} \sum_{j=0}^{\infty} Q_{1 j, \mathfrak{p}\left(e_{2}\right)}\left(-\psi^{\prime \prime}\right)^{j}\right.} \\
& \left.+\sum_{j=0}^{\infty} Q_{0 j, \mathbf{p}\left(e_{1}\right)}\left(-\psi^{\prime}\right)^{j} \sum_{j=0}^{\infty} Q_{1 j, \mathfrak{p}\left(e_{2}\right)}\left(-\psi^{\prime \prime}\right)^{j}\right]
\end{aligned}
$$

where $\psi^{\prime}, \psi^{\prime \prime}$ are the ψ-classes corresponding to the half-edges.

Lemma 9. We have

$$
\mathcal{F}_{g}^{\top} \in \mathbb{Q}(s, t)\left[L^{2}, L^{-2}\right]
$$

where $L(q)=\sqrt{\frac{s^{2}-q t^{2}}{1-q}}$. Moreover, each coefficients of L^{k} for $k \in \mathbb{Z}$ in \mathcal{F}_{g}^{\top} are symmetric with respect to s and t.

Proof. We get the result by applying Lemma 8 to the formula (23). Note that the odd powers of L in the formula (23) disappear by the factor $(-1)^{i}$ in the equation of Lemma 8 and the symmetry of the formula (23) with respect to two fixed points p_{0} and p_{1} in \mathbb{P}^{1}.

Now we have the following equations which complete the proof of the proposition,

$$
\begin{aligned}
\mathcal{F}_{g}(q) & =\left.\mathcal{F}_{q}^{\top}(q)\right|_{s=1, t=0} \\
& =\left.\mathcal{F}_{g}^{\top}(q)\right|_{s=0, t=1} \\
& =\left.\mathcal{F}_{g}^{\top}(1 / q)\right|_{s=1, t=0} \\
& =\mathcal{F}_{g}(1 / q) .
\end{aligned}
$$

The second equality above holds since $\mathcal{F}_{g}^{\mathrm{T}}(q)$ do not depend on s and t by the dimension argument. The third equality follows from Lemma 9 and the following equality,

$$
\left.L(q)^{2}\right|_{s=1, t=0}=\left.L(1 / q)^{2}\right|_{s=0, t=1} .
$$

3.2. Proof of Theorem 2

Let $\mathrm{T}=\left(\mathbb{C}^{*}\right)^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ act on Z. We choose a torus action $\mathrm{T}=\left(\mathbb{C}^{*}\right)^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ on Z with weights $\lambda_{0}, \lambda_{1}, \gamma_{0}, \gamma_{1}$, so that the associated I-function is

$$
\mathbb{I}:=\sum_{d=0}^{\infty} q^{d} \frac{\prod_{i=0}^{1} \prod_{k=0}^{d-1}\left(-H-B-k z-\gamma_{i}\right)}{\prod_{i=0}^{1} \prod_{k=1}^{d}\left(H+k z-\lambda_{i}\right)}
$$

where $H \in H^{2}\left(\mathbb{P}^{1}\right)$ is the hyperplane class of \mathbb{P}^{1} and $B=c_{1}(S) \in H^{2}(X)$. We use the specialization

$$
\lambda_{i}=(-1)^{i} s, \quad \gamma_{i}=(-1)^{i} t
$$

We define the equivariant Gromov-Witten class of Z by $\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}(q):=\sum_{d \geq 0} q^{d} \pi_{*}\left(\left[\bar{M}_{g, 0}\left(X \times \mathbb{P}^{1},(\beta, d)\right)\right]^{\mathrm{vir}, \mathrm{T}} \cap e^{\mathrm{T}}\left(-R^{\bullet} \pi_{*} F\right)\right) \in \mathcal{R}_{X, S}(s, t)[[q]]$.

Define

$$
\begin{equation*}
\mathbb{S}(1):=\mathbb{I}, \quad \mathbb{S}(H):=\mathrm{MS}(1) \tag{24}
\end{equation*}
$$

where $\mathrm{M}=H+z \frac{q d}{d q}$. We can show the series

$$
\mathbb{S}_{i}(1):=\left.\mathbb{S}\right|_{H=\lambda_{i}}, \mathbb{S}_{i}(H):=\left.\mathbb{S}_{i}(H)\right|_{H=\lambda_{i}}
$$

have the following asymptotic expansions:

$$
\begin{align*}
S_{i}(1) & =e^{\frac{\sum_{k=0}^{\infty} \mu_{k, i} B^{k}}{z}}\left(\sum_{j \geq 0, k \geq 0} R_{0 j k, i} B^{k} z^{j}\right), \\
S_{i}(H) & =e^{\frac{\sum_{k=0}^{\infty} \mu_{k, i} B^{k}}{z}}\left(\sum_{j \geq 0, k \geq 0} R_{1 j k, i} B^{k} z^{j}\right), \tag{25}
\end{align*}
$$

with series $\mu_{k, i}, R_{l j k, i} \in \mathbb{Q}(s, t)[[q]]$.
Lemma 10. For $k \geq 0, l=0,1$ and $i=0,1$, we have
(i) for $k \geq 0$,

$$
R_{l j k, i} \in \mathbb{Q}(s, t)\left[L_{0}^{1 / 2}, L_{0}^{-1 / 2}\right]
$$

(ii) $\lambda_{i}+q \frac{d}{d q} \mu_{0, i}=(-1)^{i} L_{0}, q \frac{d}{d q} \mu_{1, i}=\frac{L_{0}^{2}-s^{2}}{s^{2}-t^{2}}$, and for $k \geq 2$,

$$
\mathrm{D} \mu_{k, i} \in \mathbb{Q}(s, t)\left[L_{0}, L_{0}^{-1}\right],
$$

where $L_{0}(q)=\sqrt{\frac{s^{2}-q t^{2}}{1-q}}$.
Proof. We will use the notations

$$
\begin{aligned}
& L_{0, i}:=\lambda_{i}+\mathrm{D} \mu_{0, i} \\
& L_{k, i}:=\mathrm{D} \mu_{k, i} \text { for } k \geq 1
\end{aligned}
$$

The function II satisfies the following Picard-Fuchs equation

$$
\left(\left(\mathrm{M}-\lambda_{0}\right)\left(\mathrm{M}-\lambda_{1}\right)-q\left(-\mathrm{M}-B-\gamma_{0}\right)\left(-\mathrm{M}-B-\gamma_{1}\right)\right) \mathbb{I}=0,
$$

or equivalently,

$$
\begin{equation*}
\left[\left(\left(\mathrm{M}-\lambda_{0}\right)\left(\mathrm{M}-\lambda_{1}\right)-q\left(-\mathrm{M}-B-\gamma_{0}\right)\left(-\mathrm{M}-B-\gamma_{1}\right)\right) \mathrm{I}\right] \mathrm{I}^{-1}=0 . \tag{26}
\end{equation*}
$$

The lemma follows by applying the asymptotic forms (25) to above equation. Note that the statement of Lemma 10 for $k=0$ recover Lemma 7. The coefficient of z^{0} in (26) is given by

$$
\begin{equation*}
(1-q) \mathcal{L}_{B, i}-2 q B \mathcal{L}_{B, i}-s^{2}+q\left(t^{2}-B^{2}\right)=0 \tag{27}
\end{equation*}
$$

where we used the notation

$$
\mathcal{L}_{B, i}=L_{0, i}+L_{1, i} B+L_{2, i} B^{2}+\cdots .
$$

The coefficient of B^{0} in (27) is given by

$$
\begin{equation*}
(1-q) L_{0, i}^{2}-s^{2}+q t^{2}=0 \tag{28}
\end{equation*}
$$

Therefore we obtain

$$
L_{0, i}=(-1)^{i}\left(\frac{s^{2}-q t^{2}}{1-q}\right)^{1 / 2}:=(-1)^{i} L_{0} .
$$

Note that the choice of two roots of the equation (28) corresponds to the choice of two fixed points in \mathbb{P}^{1}. We also obtain the following equations from (28),

$$
\begin{aligned}
q & =\frac{L_{0}^{2}-s^{2}}{L_{0}^{2}-t^{2}}, \\
\mathrm{D} L_{0} & =\frac{\left(L_{0}^{2}-s^{2}\right)\left(L_{0}^{2}-t^{2}\right)}{2 L_{0}\left(s^{2}-t^{2}\right)} .
\end{aligned}
$$

The coefficient of B in (27) gives

$$
(1-q) 2 L_{0, i} L_{1, i}-2 q L_{0, i}=0
$$

The coefficient of B^{2} in (27) gives

$$
(1-q)\left(L_{1, i}^{2}+2 L_{0, i} L_{2, i}\right)-q-2 q L_{1, i}=0
$$

We obtain the result of Lemma 10 for $L_{1, i}$ and $L_{2, i}$ from above two equations. For $k \geq 3$, the coefficient of B^{k} in (27) gives

$$
(1-4 q)\left(\sum_{j=0}^{k} L_{j, i} L_{k-j, i}\right)-2 q L_{k-1, i}=0
$$

Therefore we obtain the result of Lemma 10 for $L_{k, i}$ inductively on k. Similarly we can calculate the coefficient of z^{j} in the Picard-Fuchs equation (26) for $j \geq 1$ to obtain the result for $R_{0 j k, i}$. Similar calculations were performed explicitly in [17, Theorem 3]. The result of Lemma 10 for $R_{1 j k, i}$ follows easily from the previous results for $L_{k, i}, R_{0 j k, i}$, the definition of the series $R_{1 j k, i}$ in (25) and the definition of $\mathbb{S}(H)$ in (24).

Define the series $Q_{l j k, i}$ by the equations

$$
\begin{align*}
& \sum_{j \geq 0, k \geq 0} Q_{l j k, i} B^{k} z^{j} \\
= & {\left[\left(2 \lambda_{i}\left(-\lambda_{i}-B-\gamma_{0}\right)\left(-\lambda_{i}-B-\gamma_{1}\right)\right)^{-\frac{1}{2}}\right.} \\
& \cdot \exp \left(\left(\sum_{k=2}^{\infty} \mu_{k, i} B^{k}+\sum_{i=0}^{1}\left(-B+\left(B+s+t_{i}\right) \log \left(1+\frac{B}{s+t_{i}}\right)\right)\right) / z\right) \tag{29}\\
& \left.\cdot \exp \left(\sum_{k=1}^{\infty}-\frac{N_{k, i} B_{k+1}}{k(k+1)} z^{k}\right) \sum_{j \geq 0, k \geq 0} R_{l j k, i} B^{k} z^{j}\right]_{+},
\end{align*}
$$

where $N_{k, i}=\left(\frac{1}{\lambda_{i}-\lambda_{i+1}}\right)^{k}+\left(\frac{1}{-\lambda_{i}-B-\gamma_{0}}\right)^{k}+\left(\frac{1}{-\lambda_{i}-B-\gamma_{1}}\right)^{k}$ and B_{k} are the Bernoulli numbers. For a Laurent series F in $z,[F]_{+}$is the non-negative part of F.

Lemma 11. We have

$$
Q_{l j k, i}=\sum_{r=-3 j-k}^{k} \frac{q_{l j k r}}{\left(s^{2}-t^{2}\right)^{j+k}}\left((-1)^{i} L_{0}\right)^{r+l}
$$

where $q_{l j k r} \in \mathbb{Q}[s, t]$ are some polynomials in s and t such that $q_{l j k r}(s, t)=$ $q_{l j k r}(t, s)$.

Proof. It is easy to check that in the proof of Lemma 10, the differential equation for $R_{0 j k, i}$ obtained from the coefficient of z^{j} in (26) do not depend on s and t. These calculations are parallel to the calculations given in the proof of Lemma 7. Since

$$
\mathrm{D} L_{0}=\frac{\left(L_{0}^{2}-s^{2}\right)\left(L_{0}^{2}-t^{2}\right)}{2 L_{0}\left(s^{2}-t^{2}\right)}
$$

we conclude that $R_{0 j k, i}$ have same forms as in the statement of Lemma 11. Then the statement of Lemma 11 for $Q_{0 j k, i}$ follows easily, since $Q_{0 j k, i}$ and $R_{0 j k, i}$ are related by the equation (29). The statement for $Q_{1 j k, i}$ also follows easily from the previous result for $Q_{0 j k, i}$ and the definitions of $R_{1 j k, i}, Q_{1 j k, i}$. Note that the factor $(-1)^{i}$ in the equation of Lemma 8 is due to the fact that $R_{0 j k, i}$ for $i=0,1$ are the solutions of same differential equation (26) with different initial conditions. The choice of initial conditions corresponds to the choice of two roots L_{0} or $-L_{0}$ of the defining polynomial

$$
(1-q) \mathcal{L}^{2}-s^{2}+q t^{2}=0
$$

For a power series with vanishing constant and linear terms in X,

$$
f(X, Y) \in\left(X^{2}, X Y\right) \mathbb{Q}[Y][[X]]
$$

we define
$\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} p_{m *}\left(f\left(\psi_{n+1}, \mathrm{ev}_{n+1}^{*}(B)\right) \cdots f\left(\psi_{n+m}, \mathrm{ev}_{n+m}^{*}(B)\right)\right) \in R^{*}\left(\bar{M}_{g, n}(X, \beta)\right)$.
Using the localization formula [$7,12,14$], we have

$$
\begin{equation*}
\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}=\sum_{\Gamma \in G_{g, 0}^{\mathrm{Loc}}(X)} \frac{1}{\operatorname{Aut}(\Gamma)}\left[\Gamma, \prod_{v \in \mathrm{~V}} \kappa_{v} \prod_{e \in \mathrm{E}} \Delta_{e}\right] \in \mathcal{R}_{X, S}[[q]], \tag{30}
\end{equation*}
$$

where

- for $v \in \mathrm{~V}$ let

$$
\kappa_{v}=\operatorname{Vert}_{v} \cdot \kappa\left(T-T \sum_{k \geq 0, j \geq 0} Q_{0 j k, \mathbf{p}(v)} B^{k}(-T)^{j}\right)
$$

with

$$
\operatorname{Vert}_{v}=\left[\exp \left(\mu_{1, \mathbf{p}(v)}+\log \left(\left(-\lambda_{\mathbf{p}(v)}-\gamma_{0}\right)\left(-\lambda_{\mathbf{p}(v)}-\gamma_{1}\right)\right)\right)\right]^{\int_{\mathrm{d}(v)} B}
$$

- for $e \in \mathrm{E}$, let

$$
\begin{aligned}
\Delta_{e}= & \frac{1}{\psi^{\prime}+\psi^{\prime \prime}}\left[2 B s^{2} \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathbf{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathbf{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j}\right. \\
& +\left(s^{2}-t^{2}+B^{2}\right) \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathbf{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathbf{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j} \\
& +\left(s^{2}-t^{2}+B^{2}\right) \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathbf{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{0 j k, \mathbf{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j} \\
& \left.+2 \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathfrak{p}\left(e_{1}\right)} B^{k}\left(-\psi^{\prime}\right)^{j} \sum_{j \geq 0, k \geq 0} Q_{1 j k, \mathbf{p}\left(e_{2}\right)} B^{k}\left(-\psi^{\prime \prime}\right)^{j}\right],
\end{aligned}
$$

where $\psi^{\prime}, \psi^{\prime \prime}$ are the ψ-classes corresponding to the half-edges.
Lemma 12. We have

$$
\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}} \in(1 /(1-q))^{\int_{\beta} c_{1}(S)} \cdot \mathcal{R}_{X, S}(s, t)\left[L_{0}^{2}, L_{0}^{-2}\right]
$$

where $L_{0}(q)=\sqrt{\frac{s^{2}-q t^{2}}{1-q}}$. Moreover, each coefficients of L_{0}^{k} for $k \in \mathbb{Z}$ in $\mathcal{F}_{g, \beta}^{Z, \top}$ are symmetric with respect to s and t.
Proof. First we explain the factor $(1 /(1-q))^{\int_{\beta} c_{1}(S)}$. In the formula (30), for a fixed Γ, all vertex factors of Vert_{v}, for $v \in \mathrm{~V}$ contribute to $\operatorname{Vert}_{v}{ }^{\int_{\beta} c_{1}(S)}$. Since $e^{\mu_{1, i}}=1 /(1-q)$ from Lemma 10, we get the factor $(1 /(1-q))^{\int_{\beta}^{c_{1}(S)}}$.

From equation (30), we can consider $\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}$ as a formal power series in B. Now using Lemma 11 and the following equation

$$
\mathbb{S}_{i}(H)=\mathrm{M} \cdot \mathbb{S}(1)
$$

we can prove the result of Lemma 12 from the formula (30). The odd powers of L_{0} in $\mathcal{F}_{g, \beta}^{Z, \mathcal{T}}$ vanish due to the fact that $R_{l j k, i}$ for $i=0,1$ in the proof of Lemma 10 satisfy the same differential equation (26) with the choice of two initial conditions $L_{0, i}=(-1)^{i} L_{0}$ and the fact that the localization formula for $\mathcal{F}_{g}^{S Q}$ in (10) is symmetric with respect to the two fixed points in \mathbb{P}^{1}.

We finally have the following equations which complete the proof of the theorem:

$$
\begin{aligned}
\mathcal{F}_{g, \beta}^{Z}(q) & =\left.\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}(q)\right|_{s=1, t=0} \\
& =\left.\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}(q)\right|_{s=0, t=1} \\
& =\left.(-q)^{\int_{\beta} c_{1}(S)} \mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}(1 / q)\right|_{s=1, t=0} \\
& =(-q)^{\int_{\beta} c_{1}(S)} \mathcal{F}_{g, \beta}^{Z}(1 / q)
\end{aligned}
$$

The second equality above holds since $\mathcal{F}_{g, \beta}^{Z, \mathrm{~T}}(q)$ do not depend on s and t by the dimension argument. The third equality follows from Lemma 12 and the following equation

$$
\left.L_{0}(q)^{2}\right|_{s=1, t=0}=\left.L_{0}(1 / q)^{2}\right|_{s=0, t=1}
$$

The factor $(-q)^{\int_{\beta} c_{1}(S)}$ in the third equality comes from the vertex factor Vert ${ }_{v}$ in the formula (30) and the following equation

$$
e^{\mu_{1, i}}=\frac{L_{0}^{2}-t^{2}}{s^{2}-t^{2}}=\frac{1}{1-q},
$$

which can be obtained from (ii) in Lemma 10 and $\left.\mu_{1, i}\right|_{q=0}=0$.

4. Appendix

4.1. Graphs

In the localization formula, the T-fixed loci are represented in terms of dual graphs. Let the genus g and the number of markings n for the moduli space be in the stable range

$$
2 g-2+n>0
$$

A localization graph $\Gamma \in \mathrm{G}_{g, n}^{\mathrm{Loc}}$ consists of the data $(\mathrm{V}, \mathrm{E}, \mathrm{N}, \mathrm{g}, \mathrm{p})$, where
(i) V is the vertex set,
(ii) E is the edge set (allowing possible self-edges),
(iii) $\mathrm{N}:\{1,2, \ldots, n\} \rightarrow \mathrm{V}$ is the marking assignment,
(iv) $\mathrm{g}: \mathrm{V} \rightarrow \mathbb{Z}_{\geq 0}$ is a genus assignment with

$$
g=\sum_{v \in \mathrm{~V}} \mathrm{~g}(v)+h^{1}(\Gamma)
$$

and for which (V, E, N, g) is a stable graph,
(v) $\mathrm{p}: \mathrm{V} \rightarrow\{0,1\}$ is an extra assignment.

4.2. X-valued stable graphs

Let X be a nonsingular projective variety over \mathbb{C} and let $\beta \in H_{2}(X, \mathbb{Z})$ be an effective curve class. We review the X-valued stable graphs introduced in [1]. Boundary strata of the moduli space of stable maps to X correspond to X-valued stable graphs

$$
\Gamma=\left(\mathrm{V}, \mathrm{H}, \mathrm{~g}: V \rightarrow \mathbb{Z}_{\geq 0}, \mathrm{~d}: V \rightarrow H_{2}(X, \mathbb{Z}), \mathrm{v}: H \rightarrow V, \mathrm{i}: H \rightarrow H\right)
$$

satisfying the following properties:
(i) V is a vertex set with a genus function $\mathrm{g}: \mathrm{V} \rightarrow \mathbb{Z}_{\geq 0}$ and a degree function $\mathrm{d}: \mathrm{V} \rightarrow H_{2}(X, \mathbb{Z})$,
(ii) H is a half-edge set equipped with a vertex assignment $\mathrm{v}: \mathrm{H} \rightarrow \mathrm{V}$ and an involution i ,
(iii) E , the edge set, is defined by the 2-cycle of i in H (self-edges at vertices are allowed),
(iv) L , the set of legs, is defined by the fixed points of i and endowed with a bijective correspondence with a set of markings,
(v) the pair (V, E) defines a connected graph,
(vi) for each vertex $v \in \mathrm{~V}$, the stability condition holds:

$$
2 \mathrm{~g}(v)-2+\mathrm{n}(v)>0 \text { if } \mathrm{d}(v)=0
$$

where (v) is the valence of Γ at v including both edges and legs,
(vii) the degree condition holds

$$
\sum_{v \in \mathrm{~V}} \mathrm{~d}(v)=\beta
$$

An automorphism of Γ consist of automorphisms of the sets V and H which leave invariant the structures $\mathrm{g}, \mathrm{d}, \mathrm{i}$, and v (and hence respect E). Let $\operatorname{Aut}(\Gamma)$ denote the automorphism group of Γ.

The genus of a stable graph Γ is defined by

$$
g(\Gamma)=\sum_{v \in \mathrm{~V}} \mathrm{~g}(v)+h^{1}(\Gamma)
$$

A boundary stratum of the moduli space $\bar{M}_{g, n}(X, \beta)$ of stable maps naturally determines a stable graph of genus g, degree d with n legs by considering the dual graph of a generic pointed domain curve parameterized by the stratum. Let $\mathrm{G}_{g, n, \beta}(X)$ be the set of isomorphism classes of X-valued stable graphs of genus g and degree β with n legs. We also define $\mathrm{G}_{g, n, \beta}^{\text {Loc }}(X)$ to be the set of isomorphism classes of X-valued stable graphs of genus g, degree β, n legs and extra assignment

$$
\mathrm{p}: \mathrm{V} \rightarrow\{0,1\}
$$

The set $\{0,1\}$ in the assignment p will correspond to two fixed points of the action $\left(\mathbb{C}^{*}\right)^{2}$ on \mathbb{P}^{1} in the localization formula (10) and (30).

To each stable graph Γ, we associate the moduli space \bar{M}_{Γ} which is the substack of the product

$$
\prod_{v \in V} \bar{M}_{g(v), n(v)}(X, \beta(v))
$$

cut out by the inverse image of the diagonal $\Delta_{X} \subset X \times X$ under the evaluation maps associated to all edges $e=\left(h, h^{\prime}\right) \in E$,

$$
\prod_{v \in V} \bar{M}_{g(v), n(v)}(X, \beta(v)) \xrightarrow{\mathrm{ev}_{e}} X \times X
$$

Let π_{v} be the projection from \bar{M}_{Γ} to $\bar{M}_{g(v), n(v)}(X, \beta(v))$ associated to the vertex v. There is a canonical morphism

$$
\begin{equation*}
\xi_{\Gamma}: \bar{M}_{\Gamma} \rightarrow \bar{M}_{g, n}(X, \beta) \tag{31}
\end{equation*}
$$

with the image equal to the boundary stratum associated to the graph Γ. To construct ξ_{Γ}, a family of stable maps over \bar{M}_{Γ} is required. Such a family is
easily obtained by gluing pull-backs of the universal families over each of the $\bar{M}_{g(v), n(v)}(X, \beta(v))$ along the sections corresponding to half-edges. The moduli space \bar{M}_{Γ} carries a natural virtual fundamental class $\left[\bar{M}_{\Gamma}\right]^{\text {vir }}$ induced by the Gysin pull-back along diagonals

$$
\left[\bar{M}_{\Gamma}\right]^{\mathrm{vir}}=\prod_{e \in E} \operatorname{ev}_{e}^{-1}(\Delta) \cap \prod_{v \in V}\left[\bar{M}_{g(v), n(v)}(X, \beta(v))\right]^{\mathrm{vir}}
$$

4.3. Strata algebra

For any target X, we can associate a \mathbb{Q}-algebra, called the X-valued strata algebra [1], which represents tautological classes on $\bar{M}_{g, n}(X, \beta)$. In this paper, we will restrict to the subalgebra of X-valued strata algebra associated to a fixed line bundle on X. Let S be a line bundle over X. There are two canonical line bundles on the universal curve

$$
\pi: \mathcal{C}_{g, n, \beta}(X) \rightarrow \bar{M}_{g, n}(X, \beta)
$$

The first one is the relative dualizing sheaf ω_{π} and the second one is the pullback $f^{*} S$ of the line bundle S via the universal map,

$$
f: \mathcal{C}_{g, n, \beta}(X) \rightarrow X
$$

Let s_{i} be the i-th section of π, and let

$$
D_{i} \subset \mathcal{C}_{g, n, \beta}(X)
$$

be the corresponding divisor. Denote by $\omega_{\log }$ the relative logarithmic line bundle

$$
\omega_{\pi}\left(\sum_{i}^{n} D_{i}\right)
$$

with the first Chern class $c_{1}\left(\omega_{\log }\right)$. Let $\xi=c_{1}\left(f^{*} S\right)$ be the first Chern class of the pull-back of S. Tautological classes ψ, ξ, and η classes on $\bar{M}_{g, n}(X, \beta)$ are defined as follows:

$$
\psi_{i}:=c_{1}\left(s_{i}^{*} \omega_{\pi}\right), \quad \xi_{i}:=s_{i}^{*} \xi, \quad \eta_{a, b}=\pi_{*}\left(c_{1}\left(\omega_{\mathrm{log}}\right)^{a} \xi^{b}\right) .
$$

Definition 13. A decorated X-valued stable graph $[\Gamma, \gamma]$ is an X-valued stable graph $\Gamma \in \mathrm{G}_{g, n, \beta}(X)$ together with the following decoration data γ :
(i) each leg $i \in \mathrm{~L}$ is decorated with a monomial $\psi_{i}^{a} \xi_{i}^{b}$,
(ii) each half-edge $h \in \mathbf{H} \backslash \mathrm{~L}$ is decorated with a monomial ψ_{h}^{a},
(iii) each edge $e \in \mathrm{E}$ is decorated with a monomial ξ_{e}^{a},
(iv) each vertex in V is decorated with a monomial in the variables $\left\{\eta_{a, b}\right\}_{a+b \geq 2}$.
Consider the \mathbb{Q}-vector space $\mathcal{S}_{g, n, \beta}(X, S)$ whose basis consists of the isomorphism classes of a decorated X-valued stable graph $[\Gamma, \gamma]$.

There is a product structure on $\mathcal{S}_{g, n, \beta}(X, S)$ which generalizes the intersection product on the strata algebra $\mathcal{S}_{g, n}$ of $\bar{M}_{g, n}$ ([1]). If we assign a grading

$$
\operatorname{deg}[\Gamma, \gamma]=|\mathbf{E}|+\operatorname{deg}_{\mathbb{C}}(\gamma)
$$

to each basis element $[\Gamma, \gamma], \mathcal{S}_{g, n, \beta}(X)$ is a graded \mathbb{Q}-algebra

$$
\mathcal{S}_{g, n, \beta}(X, S)=\bigoplus_{k=0}^{\infty} \mathcal{S}_{g, n, \beta}^{k}(X, S)
$$

Via this intersection product, $\mathcal{S}_{g, n, \beta}(X, S)$ is a \mathbb{Q}-algebra which we call the strata algebra (associated to S) following $[1,10]$.

To each element $[\Gamma, \gamma] \in \mathcal{S}_{g, n, \beta}(X, S)$, we assign a cycle class $\xi_{\Gamma *}[\gamma]$ obtained by the push-forward via

$$
\bar{M}_{\Gamma} \rightarrow \bar{M}_{g, n}(X, \beta)
$$

of the action of the product of the ψ, ξ and η decorations on $\left[\bar{M}_{\Gamma}\right]^{\text {vir }}$

$$
\xi_{\Gamma *}[\gamma]:=\xi_{\Gamma *}\left(\gamma \cap\left[\bar{M}_{\Gamma}\right]^{\mathrm{vir}}\right) \in A_{*}\left(\bar{M}_{g, n}(X, \beta)\right)_{\mathbb{Q}} .
$$

Then ξ_{Γ} defines a \mathbb{Q}-linear map

$$
\mathrm{q}: \mathcal{S}_{g, n, \beta}(X, S) \rightarrow A_{*}\left(\bar{M}_{g, n}(X, \beta)\right), \quad \mathbf{q}([\Gamma, \gamma])=\xi_{\Gamma *}[\gamma]
$$

and it is known that the kernel of q is an ideal. We denote by $R_{S}^{*}\left(\bar{M}_{g, n}(X, \beta)\right)$ the image of q . We write

$$
\mathcal{R}_{X, S}:=\bigoplus_{n \in \mathbb{Z}, \beta \in H_{2}(X, \mathbb{Z})} R_{S}^{*}\left(\bar{M}_{g, n}(X, \beta)\right) .
$$

References

[1] Y. Bae, Tautological relations for stable maps to a target variety, Ark. Mat. 58 (2020), no. 1, 19-38. https://doi.org/10.4310/arkiv.2020.v58.n1.a2
[2] T. Bullese and M. Moreira, in preparation.
[3] I. Ciocan-Fontanine and B. Kim, Higher genus quasimap wall-crossing for semipositive targets, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 7, 2051-2102. https://doi.org/10. 4171/JEMS/713
[4] T. Coates, A. Corti, H. Iritani, and H. Tseng, Hodge-theoretic mirror symmetry for toric stacks, J. Differential Geom. 114 (2020), no. 1, 41-115. https://doi.org/10.4310/jdg/ 1577502022
[5] C. F. Faber and R. V. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), no. 1, 173-199. https://doi.org/10.1007/s002229900028
[6] A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996 (1996), no. 13, 613-663. https://doi.org/10.1155/S1073792896000414
[7] A. B. Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices 2001 (2001), no. 23, 1265-1286. https://doi.org/10.1155/S1073792801000605
[8] T. Graber and R. V. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487-518. https://doi.org/10.1007/s002220050293
[9] F. Janda, Relations on $\bar{M}_{g, n}$ via equivariant Gromov-Witten theory of \mathbb{P}^{1}, Algebr. Geom. 4 (2017), no. 3, 311-336. https://doi.org/10.14231/AG-2017-018
[10] F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221-266. https://doi.org/10.1007/s10240-017-0088-x
[11] A. Klemm, M. Kreuzer, E. Riegler, and E. Scheidegger, Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections, hep-th/0410018.
[12] Y.-P. Lee and R. Pandharipande, Frobenius manifolds, Gromov-Witten theory and Virasoro constraints, https://people.math.ethz.ch/~rahul/, 2004.
[13] H. Lho, Gromov-Witten invariants of Calabi-Yau fibrations, arXiv:1904.10315.
[14] H. Lho and R. V. Pandharipande, Stable quotients and the holomorphic anomaly equation, Adv. Math. 332 (2018), 349-402. https://doi.org/10.1016/j.aim.2018.05.020
[15] H. Lho and R. V. Pandharipande, Crepant resolution and the holomorphic anomaly equation for $\left[\mathbb{C}^{3} / \mathbb{Z}_{3}\right]$, Proc. Lond. Math. Soc. (3) 119 (2019), no. 3, 781-813. https: //doi.org/10.1112/plms. 12248
[16] A. Marian, D. Oprea, and R. V. Pandharipande, The moduli space of stable quotients, Geom. Topol. 15 (2011), no. 3, 1651-1706. https://doi.org/10.2140/gt.2011.15.1651
[17] D. Zagier and A. Zinger, Some properties of hypergeometric series associated with mirror symmetry in Modular Forms and String Duality, 163-177, Fields Inst. Commun. 54, AMS 2008.

Hyenho Lho
Department of Mathematics
Chungnam National University
Daejon 34134, Korea
Email address: hyenho@cnu.ac.kr

