
J. Korean Math. Soc. 60 (2023), No. 3, pp. 479–501

https://doi.org/10.4134/JKMS.j210448

pISSN: 0304-9914 / eISSN: 2234-3008

SYMMETRY OF THE TWISTED GROMOV-WITTEN

CLASSES OF PROJECTIVE LINE

Hyenho Lho

Abstract. We study the rationality and symmetry of the Gromov-Witt-

en invariants of the projective line twisted by certain line bundles.

1. Introduction

1.1. Overview

Let X be a smooth algebraic variety and let S be a line bundle on X. Via
some Gromov-Witten theories over X, we define certain classes in tautological
ring RX,S of X. See Section 4.3 for the definition of RX,S . Motivated from
the rationality and symmetry of the Gromov-Witten invariants of total spaces
of OP1(−2) and OP1(−1)⊕OP1(−1), we study the rationality and symmetry of
related Gromov-Witten classes in RX,S .

While the localization method works for both the Gromov-Witten and the
stable quotient theories, in general calculations can be performed more effi-
ciently on the stable quotient side. We study the stable quotient theory of
OP1(−2) and recover the Gromov-Witten theory via the wall-crossing formula
in Section 2. Since the wall-crossing formula for OP1(−1)⊕OP1(−1) is trivial,
we directly study Gromov-Witten theory of OP1(−1)⊕OP1(−1) in Section 3.

The quasimap invariants of OP1×P1(−2,−2) were studied in [13, Theorem
4]. The Gromov-Witten invariants of OP1(−1)⊕OP1(−1) were studied in [5,8]
via localization and Hodge integrals over the moduli space of curves. The
result for OP1×P1(−2,−2) was studied in [11, Section 6.10] using symmetries
on the symplectic invariants of STU model. For local toric Hirzebruch surfaces,
another approach has been pursued by Buelles and Moreira via PT invariants
[2].
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1.2. Gromov-Witten theory of P1 twisted by OP1(−2)

Let X be a smooth algebraic variety, and let S be a line bundle on X. Let
πi be the projection maps

π1 : X × P1 → X, π2 : X × P1 → P1.

Denote by Y the total space of the line bundle

E := π∗
1(S

−1)⊗ π∗
2 OP1(−2)

on X × P1. For β ∈ H2(X,Z), d ∈ Z, let π be the map

π :Mg,0(X × P1, (β, d)) →Mg,0(X,β)

induced by the projection map π1.
For g ≥ 0, β ∈ H2(X,Z), the Gromov-Witten series of Y is defined by

(1) FY
g,β(q) :=

∑
d≥0

qdπ∗

(
[Mg,0(X × P1, (β, d))]vir ∩ e(−R•p∗f

∗E)
)
∈ RX,S [[q]],

where p : C → Mg,0(X × P1, (β, d)) is the universal curve and f : C → X × P1

is the universal map. The first result of the paper is the symmetric properties
of the Gromov-Witten classes of Y .

Theorem 1. For the Gromov-Witten classes of Y , we have

(i) FY
g,β(q) ∈ RX,S [q, (1− q)−1],

(ii) FY
g,β(1/q) = (−q)

∫
β
c1(S) · FY

g,β(q).

1.3. Gromov-Witten theory of P1 twisted by OP1(−1)⊕2

Let X be a smooth algebraic variety, and let S be a line bundle on X. Let
πi be the projections

π1 : X × P1 → X, π2 : X × P1 → P1.

Denote by Z the total space of the line bundle

F :=
(
π∗
1(S

−1)⊗ π∗
2 OP1(−1)

)⊕2

on X × P1. Let π be the map

π :Mg,0(X × P1, (β, d)) →Mg,0(X,β)

induced by the projection map π1. Note that π depends on the genus and
number of markings, but we will use the same notation for π when the domain
of π is clear from the context. Here we need to consider the moduli space with
the markings in Section 2.1.

For g ≥ 0, β ∈ H2(X,Z), the Gromov-Witten classes of Z is defined by

FZ
g,β(q) :=

∑
d≥0

qd π∗

(
[Mg,0(X × P1, (β, d))]vir ∩ e(−R•p∗f

∗F )
)
∈ RX,S [[q]],
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where p : C →Mg,n(X × P1, (β, d)) is the universal curve and f : C → X × P1

is the universal map. The second result of the paper is the following symmetric
properties of the Gromov-Witten classes of Z.

Theorem 2. For the Gromov-Witten classes of Z, we have

(i) FZ
g,β(q) ∈ RX,S [q, (1− q)−1],

(ii) FZ
g,β(1/q) = (−q)

∫
β
c1(S) · FZ

g,β(q).

Acknowledgments. I thank T. Buelles and M. Moreira for sharing their work
on local Hirzebruch surfaces. I am very grateful to H. Iritani for the helpful
comments about the oscillatory integrals.

2. Gromov-Witten theory of P1 twisted by OP1(−2)

2.1. Stable quotient and wall crossing formula

We review here the stable quotient invariants and wall crossing formula
[3, 16].

Let (C, p1, . . . , pn) be an n-pointed quasi-stable curve:

• C is a reduced, connected, complete scheme of dimension one with at
worst nodal singularities,

• the markings pi are distinct and lie in the non-singular locus of C.

Let q be a quotient of the rank 2 trivial bundle on C,

C2 ⊗OC
q−→ Q→ 0.

We say q is a quasi-stable quotient if the quotient sheaf Q is locally free at the
nodes and markings of C. Quasi-stability of q implies the associated kernel,

0 → T → C2 ⊗ C q−→ Q→ 0,

is a locally free sheaf on C. We assume that the rank of T is one. Let
(C, p1, . . . , pn) be an n-pointed quasi-stable curve equipped with a quasi-stable
quotient q. The data (C, p1, . . . , pn, q) determine a stable quotient if the Q-line
bundle

ωC(p1 + · · ·+ pn)⊗ (T ∗)⊗ϵ

is ample on C for every positive ϵ ∈ Q.

Denote by Q
∞,0+

g,n (X × P1, (β, d)) the moduli space parameterizing the data

(C, p1, . . . , pn, 0 → S → C2 ⊗OC
q−→ Q→ 0, f : C → X),

where q is a quasi-stable quotient with deg (T ) = −d and f is a quasi-stable
map with deg (f) = β ∈ H2(X,Z) such that either q is a stable quotient or f
is a stable map.

Combining the usual argument in the moduli space of stable maps and the
argument in [16], we get the following results.
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Theorem 3. Q
∞,0+

g,n (X×P1, (β, d)) is a separated and proper Delinge-Mumford
stack of finite type over C. Moreover it admits a perfect obstruction theory.

Over the moduli space Q
∞,0+

g,n (X ×P1, (β, d)), there is a universal n-pointed
curve

p : C → Q
∞,0+

g,n (X × P1, (β, d))

with a universal quotient

0 → T → C2 ⊗OC → Q → 0.

The subsheaf T is locally free on C because of the stability condition. We have
the natural map

π : Q
∞,0+

g,0 (X × P1, (β, d)) →Mg,0(X,β).

We define the stable quotient series by

FSQ
g,β(q) :=

∑
d≥0

qdπ∗

(
[Q

∞,0+

g,0 (X × P1, (β, d))]vir ∩ e(−R•p∗(f
∗(S−1)⊗ T ⊗2))

)
,

where p : C →Mg,n(X × P1, (β, d)) is the universal curve and f : C → X × P1

is the universal map.
Recall the Gromov-Witten series FY

g,β of Y defined by (1). More generally,
we define the Gromov-Witten series of Y with insertion,

FY
g,n,β [γ1, γ2, . . . , γn](q)

:=
∑
d≥0

qdπ∗

(
[Mg,n(X × P1, (β, d))]vir ∩ e(−R•π∗f

∗E) ∪
n∏

k=1

ev∗(γk)
)
,

where γk ∈ H∗(X × P1). Here π : Mg,n(X × P1, (β, d)) → Mg,n(X,β) and
note that FY

g,0,β = FY
g,β . Let H ∈ H2(P1) be the hyperplane class of P1 and

B = c1(S) ∈ H2(X). The relationship between the Gromov-Witten and stable
quotient series can be proved using the argument in the proof of Theorem 1.3.2
in [3]:

∞∑
n=0

1

n!
FY

g,β [I1(q)(H +
1

2
B), . . . , I1(q)(H +

1

2
B)](q) = FSQ

g,β(q),(2)

where I1(q) is defined by

I1(q) = −2 log
(
1 +

√
1− 4q

)
+ 2 log 2.

2.2. Localizations

We fix a torus action T = (C∗)2 on P1 with weights λ0, λ1 on the vector
space C2. The T-weight on the fiber over pi of the canonical bundle OP1(−2) →
P1 is −2λi. We use the specialization

λ0 = 1, λ1 = −1.
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Proposition 4. For the quasimap invariants of OP1(−2), we have

FSQ
g,β(q) ∈ RX,S [(1− 4q)−1].

Proof. Define the I-function

I :=

∞∑
d=0

qd
∏2d−1

k=0 (−2H −B − kz)∏1
i=0

∏d
k=1(H − λi + kz)

.

Define

S(1) = I,

S(H) =
MS(1)

L0
−
(1
2
− 1

L0

)
S(1),

(3)

where M := H + z qd
dq and L0(q) = (1− 4q)−1/2.

The series

Si(1) := S|H=λi
, Si(H) := S(H)|H=λi

have the following asymptotic expansions:

Si(1) = e

∑∞
k=0 µk,iB

k

z

( ∑
j≥0,k≥0

R0jk,iB
kzj
)
,

Si(H) = e

∑∞
k=0 µk,iB

k

z

( ∑
j≥0,k≥0

R1jk,iB
kzj
)
,

(4)

with series µk,i, Rljk,i ∈ Q[[q]]. The first equality can be obtained by directly
analyzing the I-function ([17, Lemma 1]). See [12, Lemma 41] for a geometric
proof. The second equality can be obtained from (3).

Define the series Lk,i for k ∈ Z≥0 by

L0,i = Dµ0,i + λi,

Lk,i = Dµk,i for k ≥ 1,
(5)

where D := qd
dq . We have the following result for the series Lk,i, Rljk,i.

Lemma 5. For k, l, j ≥ 0 and i = 0, 1, we have

Lk,i, Rljk,i ∈ Q[L0].

Proof. The function I satisfies the following Picard-Fuchs equation,(
(M− λ0)(M− λ1)− q(−2M−B)(−2M−B − z)

)
I = 0.(6)

The lemma follows by applying the asymptotic forms (4) to above equation.
The coefficient of z0 in (6) is calculated as

(1− 4q)L2
B,i − 8qBLB,i − (1 + 4qB2) = 0,(7)

where we used the notation

LB,i := L0,i + L1,iB + L2,iB
2 + · · · .
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The coefficient of B0 in (7) gives

(1− 4q)L2
0,i − 1 = 0.(8)

Therefore we obtain

L0,i = (−1)i
( 1

1− 4q

)1/2
:= (−1)iL0.

Note that the choice of two roots of the equation (8) corresponds to the choice
of two fixed points in P1. The coefficient of B in (7) gives

2L0,iL1,i(1− 4q)− 8qL0,i = 0.(9)

The coefficient of B2 in (7) gives

(L2
1,i + 2L2,iL0,i)(1− 4q)− 4q − 8qL1,i = 0.

Therefore we obtain the result of Lemma 5 for L1,i and L2,i from above two
equations. For k ≥ 3, the coefficient of Bk in (7) gives( k∑

j=0

Lj,iLk−j,i

)
(1− 4q)− 8qLk−1,i = 0.

Therefore we obtain the result of Lemma 5 for Lk,i inductively on k. Similarly
we can calculate the coefficient of zj in the Picard-Fuchs equation (6) for j ≥ 1
to obtain the result for R0jk,i. Similar calculations were performed explicitly
in [17, Theorem 3]. The result of Lemma 5 for R1jk,i follows easily from the
previous results for Lk,i,R0jk,i, the definition of the series R1jk,i in (4) and the
definition of S(H) in (3). □

Define the series Qljk,i by the equations∑
j≥0,k≥0

Qljk,iB
kzj =

[(
2λi(−2λi −B)

)− 1
2

exp
(( ∞∑

k=2

µk,iB
k −B

+
(
B + 2λi

)
log
(
1 +

B

2λi

))
/z
)
exp
( ∞∑

k=1

−Nk,iBk+1

k(k + 1)
zk
)

∑
j≥0,k≥0

Rljk,iB
kzj
]
+
,

where Nk,i =
(

1
λi−λi+1

)k
+
(

1
−2λi−B

)k
and Bk are the Bernoulli numbers. For

a Laurent series F in z, [F ]+ is the non-negative part of F .
Using the localization formula [7, 12,14], we have

FSQ
g =

∑
Γ∈GLoc

g,0,β(X)

1

Aut(Γ)
[Γ,
∏
v∈V

κv
∏
e∈E

∆e] ∈ RX,S [[q]],(10)

where
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• for v ∈ V let

κv = Vertv · κ
(
T − T

∑
k≥0,j≥0

Q0jk,p(v)B
k(−T )j

)
,

with

Vertv =
[
exp
(
µ1,p(v) + log(−2λp(v))

)]∫d(v)
B

,

• for e ∈ E, let

∆e =
1

ψ′ + ψ′′

[
− 2

∑
j≥0,k≥0

Q0jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q0jk,p(e2)B
k(−ψ′′)j

−B
∑

j≥0,k≥0

Q0jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q1jk,p(e2)B
k(−ψ′′)j

−B
∑

j≥0,k≥0

Q1jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q0jk,p(e2)B
k(−ψ′′)j

− 2
∑

j≥0,k≥0

Q1jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q1jk,p(e2)B
k(−ψ′′)j

]
,

where ψ′, ψ′′ are the ψ-classes corresponding to the half-edges.

See the appendix for the definition of GLoc
g,0,β(X). For a power series with van-

ishing constant and linear terms in X,

f(T,B) ∈ (T 2, TB)Q[B][[T ]]

we define

κ(f) =
∑
m≥0

1

m!
pm∗

(
f(ψn+1, ev

∗
n+1(B)) · · · f(ψn+m, ev

∗
n+m(B))

)
∈ R∗(Mg,n(X,β)).

From the formula (10) and Lemma 5, we conclude that

FSQ
g ∈ RX,S [L0].

Moreover it is easy to check that only L2k
0 terms are non-zero for k ∈ Z≥0 in

the formula (10). This is due to the fact that Rljk,i for i = 0, 1 in the proof
of Lemma 5 satisfy the same differential equation with the choice of two initial
conditions L0,i = (−1)iL0 and the fact that the localization formula for FSQ

g

in (10) is symmetric with respect to the two fixed points in P1. The proof of
the proposition follows from L0(q)

2 = (1− 4q)−1. □

2.3. Proof of Theorem 1

Recall that

I1(q) = 2 log 2− 2 log (1 +
√

1− 4q).

If we define x by

x = q · exp(2 log 2− 2 log (1 +
√
1− 4q)),
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we have

q =
x

(1 + x)2
.

Therefore (2) yields the following equality:

FY
g,β(x) = FSQ

g,β(x/(1 + x)2) · (1/(1 + x))
∫
β
c1(S).(11)

Since we have
1

1− 4q
=
(1 + x

1− x

)2
,

the proof of Theorem 1 follows from the above equation and Proposition 4. Note

that the factor (1/(1+x))
∫
β
c1(S) in (11) is canceled with Vertv =

[
exp
(
µ1,p(v)+

log(−2λp(v))
)]∫d(v)

B

in the formula (10), since we can easily calculate

exp(µ1,p(v)) =
1

1− 4q

from the equation (9).

3. Gromov-Witten theory of P1 twisted by OP1(−1)⊕2

3.1. Multiple cover formula

Let π : U → Mg,0(P1, d) be the universal family over the moduli space.
Let f : U → P1 be the universal evaluation map. For N := O(−1) ⊕ O(−1),
R1π∗f

∗N is a vector bundle on Mg,0(P1, d). The following result was obtained
using torus localization and Hodge integrals over the moduli space of curves
[5, 8]. ∫

[Mg,0(P1,d)]vir
e(R1π∗f

∗N) =
|B2g| · d2g−3

2g · (2g − 2)!
.(12)

Define the Gromov-Witten series of OP1(−1)⊕OP1(−1) by

Fg(q) :=

∞∑
d=0

qd
∫
[Mg,0(P1,d)]

e(R1π∗f
∗N).

From the equation (12) and the following equations

Dm
( 1

1− q

)
=

∞∑
k=1

kmqk,

we can easily prove

Fg(1/q) = Fg(q).

For the generalization of the result, we give another proof of the above equation.

Proposition 6. The Gromov-Witten series of OP1(−1)⊕OP1(−1) satisfies

Fg(1/q) = Fg(q).
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Proof. We fix a torus action T = (C∗)2 × (C∗)2 on OP1(−1) ⊕ OP1(−1) with
weights λ0, λ1, γ0, γ1, so that the associated I-function is

I :=

∞∑
d=0

qd

∏1
i=0

∏d−1
k=0

(
−H − kz − γi

)
∏1

i=0

∏d
k=1

(
H + kz − λi

) ,(13)

where H ∈ H2(P1) is the hyperplane class. Here the first (C∗)2 in T acts
coordinate-wisely on P1 and the second (C∗)2 acts coordinate-wisely on the
fiber OP1(−1) ⊕ OP1(−1). With the induced T-action on Mg,0(P1, d), define
the T-equivariant Gromov-Witten series of O(−1)⊕O(−1) by

FT
g (q) :=

∞∑
d=0

qd
∫
[Mg,0(P1,d)]vir,T

eT(R1π∗f
∗N).

Here, [Mg,0(P1, d)]vir is the corresponding equivariant virtual class and eT is
the equivariant Euler class. Note that FT(q) does not depend on s and t, since
the corresponding virtual dimension is zero. Therefore we have the following
equality:

Fg(q) = FT
g (q).

We use the specialization

λi = (−1)is, γi = (−1)it.(14)

Define

S(1) = I, S(H) = M S(1),

where M := H + z qd
dq . The series

Si(1) := S|H=λi , Si(H) := S(H)|H=λi

have the following asymptotic expansions:

Si(1) = e
µi
z

(
R00,i +R01,iz +R02,iz

2 + · · ·
)
,

Si(H) = e
µi
z

(
R10,i +R11,iz +R12,iz

2 + · · ·
)
,

(15)

with series µi, Rlj,i ∈ Q(s, t)[[q]]. We have the following result for the series
µi, Rlj,i.

Lemma 7. For k ≥ 0, l = 0, 1 and i = 0, 1, we have

(−1)is+ Dµi = (−1)iL, Rlj,i ∈ Q(s, t)[L1/2, L−1/2],

where L(q) =
√

s2−q t2

1−q .

Proof. The function I satisfies the following Picard-Fuchs equation(
(M− λ0)(M− λ1)− q(−M− γ0)(−M− γ1)

)
I = 0,
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or equivalently,[(
(M− λ0)(M− λ1)− q(−M− γ0)(−M− γ1)

)
I
]
I−1 = 0.(16)

The lemma will follow by applying the asymptotic forms (15) to above equation.
Instead of the asymptotic expansion (15) of I, we use the following exponential
form:

I|H=λi
= exp

(µi + a0,iz + a1,iz
2 + · · ·

z

)
.(17)

The evaluations of R0k,i can be obtained from those of ak,i by the equation

e
µi
z

(
R00,i +R01,iz +R02,iz

2 + · · ·
)
= exp

(µi + a0,iz + a1,iz
2 + · · ·

z

)
.(18)

If we apply (17) to the Picard-Fuchs equation (16), the coefficient of z0 in the
equation is given by

(1− q)(λi + Dµi)
2 − s2 + q t2 = 0.

Therefore µi satisfies

λi + Dµi = (−1)iL,

where L is the root of the polynomial

(1− q)L2 − s2 + q t2 = 0

with L|q=0 = s. From the above equation we obtain

q =
L2 − s2

L2 − t2
,

DL =
(L2 − s2)(L2 − t2)

2L(s2 − t2)
.

The coefficient of z in the equation (16) is given by

(1− q)
(
2LDa0,i + D((−1)iL)

)
= 0.

Therefore we calculate

Da0,i = − (L2 − s2)(L2 − t2)

4L2(s2 − t2)
.

By solving above differential equation with the initial condition a0,i|q=0 = 0,
we obtain

a0,i = −
log
(
(−1)iL/s

)
2

.

From the equation (18) we obtain

R00,i =
( s

(−1)iL

)1/2
.
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For k ≥ 2, the coefficient of zk in the equation (16) is given by

(1− q)
(
2LDak−1,i + D2ak−2,i +

k−2∑
j=0

Daj,iDak−2−j,i

)
= 0.

We can inductively solve the differential equation

2LDak−1,i + D2ak−2,i +

k−2∑
j=0

Daj,iDak−2−j,i = 0(19)

with the initial conditions ak,i = 0 for k ≥ 1 to obtain each ak,i for k ≥ 1 as
a Laurent polynomial in L up to possible extra factor logL. This argument
yields weaker result,

ak,i ∈ Q(s, t)[L,L−1, logL],

and hence

Rlj,i ∈Q(s, t)[L1/2, L−1/2, logL],

by the equation (18).
To prove the result

Rlj,i ∈Q(s, t)[L1/2, L−1/2],

we use the saddle point method for finding asymptotic behaviour of the oscilla-
tory integral occurring in Givental’s equivariant mirror [6]. This argument was
explained by Iritani. See [15, Appendix] for the introduction to this method.
Similar argument was also used in [9, Appendix A.6]. Here we follow the nota-
tion of [15, Appendix]. The equivariant mirror for local P1 was introduced by
Givental as the Landau-Ginzburg potential

W (w0, w1, w2, w3) = w0 + w1 + w2 + w3 − t log (w1/w2) + s log(q w3/w0),

defined on the family of affine varieties

Mq = {(w0, w1, w2, w3) ∈ C4 : w0w3 = q w1w2}.
The associated oscillatory integral is defined by

I =

∫
Γ⊂Mq

eW/zω,(20)

where ω is the (meromorphic) volume form on Mq:

ω =
d logw0 ∧ d logw1 ∧ d logw2 ∧ d logw3

d log q
.

The integral in (20) is along 3-cycles Γ through a specific critical point of the
Landau-Ginzburg potential W which can be constructed via Morse theory of
the real part of W/z. A relationship between the formal asymptotic expansion
of the mirror oscillatory integral (20) and the equivariant I-function (13) was
proven in [4, Proposition 6.9]. Denote by

Asymcri(e
W/zω)
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be the formal asymptotic expansion of (20) at the critical point cri. Applying
[4, Proposition 6.9] to our settings, we obtain

eW (cri)/z ·Asymcri(e
W/zω) = e

µi
z ·

(
1 +

R01,i

R00,i
z +

R02,i

R00,i
z2 + · · ·

)
.

Now the asymptotic behaviour of the oscillatory integral (20) can be explicitly
calculated via the saddle point method as follows:

Asymcri(e
W/zω) =

1√
det(hj,k)

[
e−

z
2

∑
j,k hj,k∂j∂keW≥3/z

]
t=cri

,(21)

where hj,k = ∂j∂kW (cri) is the Hessian matrix, (hj,k) are the coefficients of

the matrix inverse to (hj,k), ∂j =
∂

∂wj
, and

W≥3(w) =W (w)−W (cri)−
1

2

∑
j,k

hj,k(wj − crji )(wk − crki ).

See [15, Appendix A.1] for more explanations. The coordinates (a, b, u) are
more convenient for the calculations,

w0 = u, w1 = au, w2 = bu, w3 = qabu.

Then we can rewrite

W (a, b, u) = u(1 + a+ b+ q ab)− t log(a/b) + s log(q ab),

and its critical points are given by

u = s− (±L),
ua = t+ (±L),
ub = −t+ (±L),

uab q = −s− (±L).

Note that the choice of the root (±L) corresponds to the choice of two crit-
ical points. The Hessian of W with respect to the logarithmic coordinates
(log a, log b, logu) at this critical point is given by

Hess(W ) = 2L(t2 − s2).

Therefore the formal asymptotic expansion (21) of the oscillatory integral (20)
have the coefficients (which correspond to the normalized forms R0j,i/R00,i)
lying in the ring Q(s, t)[L,L−1]. This concludes the proof of the statement for
R0k,i. The statement for R1k,i follows easily from the definition of S(H) :=
M S(1). □

Define the series Qlj,i by the equations

∞∑
j=0

Qlj,i z
j =

1

R00,i
exp
( ∞∑

k=0

−Nj,iBj+1

j(j + 1)
zj
)∑

j=0

Rlj,i z
j ,(22)



SYMMETRY OF THE TWISTED GROMOV-WITTEN CLASSES OF P1 491

where Nj,i =
(

1
λi−λi+1

)j
+
(

1
−λi−γ0

)j
+
(

1
−λi−γ1

)j
and Bj are the Bernoulli

numbers.

Lemma 8. For j ≥ 0, l = 0, 1 and i = 0, 1, we have

Qlj,i =

j∑
m=−3j

qljm
(s2 − t2)j

(
(−1)iL

)m+l

,

where qljm ∈ Q[s, t] satisfies qljm(s, t) = qljm(t, s).

Proof. Recall we use the specialization (14). In the proof of Lemma 7, the
differential equation (19) do not depend on s and t. Since

DL =
(L2 − s2)(L2 − t2)

2L(s2 − t2)
,

we conclude that ak,i have same forms as in the statement of Lemma 8. Then
the statement of Lemma 8 for Q0j,i follows easily, since Q0j,i and aj,i are
related by the equations (18) and (22). The statement for Q1j,i also follows
easily from the definition of R1j,i and Q1j,i. Note that the factor (−1)i in the
equation of Lemma 8 is due to the fact that aj,i for i = 0, 1 are the solutions of
same differential equation (19) with different initial conditions. The choice of
initial conditions corresponds to the choice of two roots L or −L of the defining
polynomial

(1− q)L2 − s2 + q t2 = 0. □

Using the localization formula [7, 12,14], we have

FT
g =

∑
Γ∈GLoc

g,0

1

Aut(Γ)
[Γ,
∏
v∈V

κv
∏
e∈E

∆e],(23)

where

• for v ∈ V let

κv = κ
(
T − T

∞∑
j=0

Q0j,p(v)(−T )j
)
,

• for e ∈ E, let

∆ =
s2 − t2

ψ′ + ψ′′

[ ∞∑
j=0

Q0j,p(e1)(−ψ
′)j

∞∑
j=0

Q1j,p(e2)(−ψ
′′)j

+

∞∑
j=0

Q0j,p(e1)(−ψ
′)j

∞∑
j=0

Q1j,p(e2)(−ψ
′′)j
]
,

where ψ′, ψ′′ are the ψ-classes corresponding to the half-edges.
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Lemma 9. We have

FT
g ∈ Q(s, t)[L2, L−2],

where L(q) =
√

s2−q t2

1−q . Moreover, each coefficients of Lk for k ∈ Z in FT
g are

symmetric with respect to s and t.

Proof. We get the result by applying Lemma 8 to the formula (23). Note that
the odd powers of L in the formula (23) disappear by the factor (−1)i in the
equation of Lemma 8 and the symmetry of the formula (23) with respect to
two fixed points p0 and p1 in P1. □

Now we have the following equations which complete the proof of the propo-
sition,

Fg(q) = FT
q (q)|s=1,t=0

= FT
g (q)|s=0,t=1

= FT
g (1/q)|s=1,t=0

= Fg(1/q).

The second equality above holds since FT
g (q) do not depend on s and t by

the dimension argument. The third equality follows from Lemma 9 and the
following equality,

L(q)2|s=1,t=0 = L(1/q)2|s=0,t=1. □

3.2. Proof of Theorem 2

Let T = (C∗)2×(C∗)2 act on Z. We choose a torus action T = (C∗)2×(C∗)2

on Z with weights λ0, λ1, γ0, γ1, so that the associated I-function is

I :=

∞∑
d=0

qd

∏1
i=0

∏d−1
k=0

(
−H −B − kz − γi

)
∏1

i=0

∏d
k=1

(
H + kz − λi

) ,

where H ∈ H2(P1) is the hyperplane class of P1 and B = c1(S) ∈ H2(X). We
use the specialization

λi = (−1)is, γi = (−1)it.

We define the equivariant Gromov-Witten class of Z by

FZ,T
g,β (q) :=

∑
d≥0

qd π∗

(
[Mg,0(X × P1, (β, d))]vir,T ∩ eT(−R•π∗F )

)
∈ RX,S(s, t)[[q]].

Define

S(1) := I, S(H) := MS(1),(24)

where M = H + z qd
dq . We can show the series

Si(1) := S|H=λi
, Si(H) := Si(H)|H=λi
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have the following asymptotic expansions:

Si(1) = e

∑∞
k=0 µk,iB

k

z

( ∑
j≥0,k≥0

R0jk,iB
kzj
)
,

Si(H) = e

∑∞
k=0 µk,iB

k

z

( ∑
j≥0,k≥0

R1jk,iB
kzj
)
,

(25)

with series µk,i, Rljk,i ∈ Q(s, t)[[q]].

Lemma 10. For k ≥ 0, l = 0, 1 and i = 0, 1, we have

(i) for k ≥ 0,

Rljk,i ∈ Q(s, t)[L
1/2
0 , L

−1/2
0 ],

(ii) λi + q d
dqµ0,i = (−1)iL0, q

d
dqµ1,i =

L2
0−s2

s2−t2 , and for k ≥ 2,

Dµk,i ∈ Q(s, t)[L0, L
−1
0 ],

where L0(q) =
√

s2−q t2

1−q .

Proof. We will use the notations

L0,i := λi + Dµ0,i,

Lk,i := Dµk,i for k ≥ 1.

The function I satisfies the following Picard-Fuchs equation(
(M− λ0)(M− λ1)− q(−M−B − γ0)(−M−B − γ1)

)
I = 0,

or equivalently,[(
(M− λ0)(M− λ1)− q(−M−B − γ0)(−M−B − γ1)

)
I
]
I−1 = 0.(26)

The lemma follows by applying the asymptotic forms (25) to above equation.
Note that the statement of Lemma 10 for k = 0 recover Lemma 7. The coeffi-
cient of z0 in (26) is given by

(1− q)LB,i − 2qBLB,i − s2 + q(t2 −B2) = 0,(27)

where we used the notation

LB,i = L0,i + L1,iB + L2,iB
2 + · · · .

The coefficient of B0 in (27) is given by

(1− q)L2
0,i − s2 + qt2 = 0.(28)

Therefore we obtain

L0,i = (−1)i
(s2 − qt2

1− q

)1/2
:= (−1)iL0.
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Note that the choice of two roots of the equation (28) corresponds to the choice
of two fixed points in P1. We also obtain the following equations from (28),

q =
L2
0 − s2

L2
0 − t2

,

DL0 =
(L2

0 − s2)(L2
0 − t2)

2L0(s2 − t2)
.

The coefficient of B in (27) gives

(1− q)2L0,iL1,i − 2qL0,i = 0.

The coefficient of B2 in (27) gives

(1− q)(L2
1,i + 2L0,iL2,i)− q − 2qL1,i = 0.

We obtain the result of Lemma 10 for L1,i and L2,i from above two equations.
For k ≥ 3, the coefficient of Bk in (27) gives

(1− 4q)
( k∑

j=0

Lj,iLk−j,i

)
− 2qLk−1,i = 0.

Therefore we obtain the result of Lemma 10 for Lk,i inductively on k. Similarly
we can calculate the coefficient of zj in the Picard-Fuchs equation (26) for j ≥ 1
to obtain the result for R0jk,i. Similar calculations were performed explicitly
in [17, Theorem 3]. The result of Lemma 10 for R1jk,i follows easily from the
previous results for Lk,i,R0jk,i, the definition of the series R1jk,i in (25) and
the definition of S(H) in (24). □

Define the series Qljk,i by the equations∑
j≥0, k≥0

Qljk,iB
kzj

=
[(

2λi(−λi −B − γ0)(−λi −B − γ1)
)− 1

2

· exp
(( ∞∑

k=2

µk,iB
k +

1∑
i=0

(
−B + (B + s+ ti)log(1 +

B

s+ ti
)
))
/z
)

(29)

· exp
( ∞∑

k=1

−Nk,iBk+1

k(k + 1)
zk
) ∑

j≥0, k≥0

Rljk,iB
kzj
]
+
,

where Nk,i =
(

1
λi−λi+1

)k
+
(

1
−λi−B−γ0

)k
+
(

1
−λi−B−γ1

)k
and Bk are the

Bernoulli numbers. For a Laurent series F in z, [F ]+ is the non-negative part
of F .
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Lemma 11. We have

Qljk,i =

k∑
r=−3j−k

qljkr
(s2 − t2)j+k

((−1)iL0)
r+l,

where qljkr ∈ Q[s, t] are some polynomials in s and t such that qljkr(s, t) =
qljkr(t, s).

Proof. It is easy to check that in the proof of Lemma 10, the differential equa-
tion for R0jk,i obtained from the coefficient of zj in (26) do not depend on s
and t. These calculations are parallel to the calculations given in the proof of
Lemma 7. Since

DL0 =
(L2

0 − s2)(L2
0 − t2)

2L0(s2 − t2)
,

we conclude that R0jk,i have same forms as in the statement of Lemma 11.
Then the statement of Lemma 11 for Q0jk,i follows easily, since Q0jk,i and
R0jk,i are related by the equation (29). The statement for Q1jk,i also follows
easily from the previous result for Q0jk,i and the definitions of R1jk,i, Q1jk,i.
Note that the factor (−1)i in the equation of Lemma 8 is due to the fact that
R0jk,i for i = 0, 1 are the solutions of same differential equation (26) with
different initial conditions. The choice of initial conditions corresponds to the
choice of two roots L0 or −L0 of the defining polynomial

(1− q)L2 − s2 + q t2 = 0. □

For a power series with vanishing constant and linear terms in X,

f(X,Y ) ∈ (X2, XY )Q[Y ][[X]]

we define

κ(f) =
∑
m≥0

1

m!
pm∗

(
f(ψn+1, ev

∗
n+1(B)) · · · f(ψn+m, ev

∗
n+m(B))

)
∈ R∗(Mg,n(X,β)).

Using the localization formula [7, 12,14], we have

FZ,T
g,β =

∑
Γ∈GLoc

g,0(X)

1

Aut(Γ)
[Γ,
∏
v∈V

κv
∏
e∈E

∆e] ∈ RX,S [[q]],(30)

where

• for v ∈ V let

κv = Vertv · κ
(
T − T

∑
k≥0,j≥0

Q0jk,p(v)B
k(−T )j

)
,

with

Vertv =
[
exp
(
µ1,p(v) + log

(
(−λp(v) − γ0)(−λp(v) − γ1)

))]∫
d(v)

B

,
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• for e ∈ E, let

∆e =
1

ψ′ + ψ′′

[
2Bs2

∑
j≥0,k≥0

Q0jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q0jk,p(e2)B
k(−ψ′′)j

+ (s2 − t2 +B2)
∑

j≥0,k≥0

Q0jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q1jk,p(e2)B
k(−ψ′′)j

+ (s2 − t2 +B2)
∑

j≥0,k≥0

Q1jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q0jk,p(e2)B
k(−ψ′′)j

+ 2
∑

j≥0,k≥0

Q1jk,p(e1)B
k(−ψ′)j

∑
j≥0,k≥0

Q1jk,p(e2)B
k(−ψ′′)j

]
,

where ψ′, ψ′′ are the ψ-classes corresponding to the half-edges.

Lemma 12. We have

FZ,T
g,β ∈

(
1/(1− q)

)∫
β
c1(S)

· RX,S(s, t)[L
2
0, L

−2
0 ],

where L0(q) =
√

s2−q t2

1−q . Moreover, each coefficients of Lk
0 for k ∈ Z in FZ,T

g,β

are symmetric with respect to s and t.

Proof. First we explain the factor
(
1/(1− q)

)∫
β
c1(S)

. In the formula (30), for

a fixed Γ, all vertex factors of Vertv, for v ∈ V contribute to Vert

∫
β
c1(S)

v . Since

eµ1,i = 1/(1− q) from Lemma 10, we get the factor
(
1/(1− q)

)∫
β
c1(S)

.

From equation (30), we can consider FZ,T
g,β as a formal power series in B.

Now using Lemma 11 and the following equation

Si(H) = M · S(1)

we can prove the result of Lemma 12 from the formula (30). The odd powers

of L0 in FZ,T
g,β vanish due to the fact that Rljk,i for i = 0, 1 in the proof of

Lemma 10 satisfy the same differential equation (26) with the choice of two
initial conditions L0,i = (−1)iL0 and the fact that the localization formula for
FSQ

g in (10) is symmetric with respect to the two fixed points in P1. □

We finally have the following equations which complete the proof of the
theorem:

FZ
g,β(q) = FZ,T

g,β (q)|s=1,t=0

= FZ,T
g,β (q)|s=0,t=1

= (−q)
∫
β
c1(S)FZ,T

g,β (1/q)|s=1,t=0

= (−q)
∫
β
c1(S)FZ

g,β(1/q).
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The second equality above holds since FZ,T
g,β (q) do not depend on s and t by

the dimension argument. The third equality follows from Lemma 12 and the
following equation

L0(q)
2|s=1,t=0 = L0(1/q)

2|s=0,t=1.

The factor (−q)
∫
β
c1(S) in the third equality comes from the vertex factor Vertv

in the formula (30) and the following equation

eµ1,i =
L2
0 − t2

s2 − t2
=

1

1− q
,

which can be obtained from (ii) in Lemma 10 and µ1,i|q=0 = 0.

4. Appendix

4.1. Graphs

In the localization formula, the T-fixed loci are represented in terms of dual
graphs. Let the genus g and the number of markings n for the moduli space
be in the stable range

2g − 2 + n > 0.

A localization graph Γ ∈ GLoc
g,n consists of the data (V, E, N, g, p), where

(i) V is the vertex set,
(ii) E is the edge set (allowing possible self-edges),
(iii) N : {1, 2, . . . , n} → V is the marking assignment,
(iv) g : V → Z≥0 is a genus assignment with

g =
∑
v∈V

g(v) + h1(Γ)

and for which (V, E, N, g) is a stable graph,
(v) p : V → {0, 1} is an extra assignment.

4.2. X-valued stable graphs

Let X be a nonsingular projective variety over C and let β ∈ H2(X,Z) be
an effective curve class. We review the X-valued stable graphs introduced in
[1]. Boundary strata of the moduli space of stable maps to X correspond to
X-valued stable graphs

Γ = (V,H, g : V → Z≥0, d : V → H2(X,Z), v : H → V, i : H → H)

satisfying the following properties:

(i) V is a vertex set with a genus function g : V → Z≥0 and a degree
function d : V → H2(X,Z),

(ii) H is a half-edge set equipped with a vertex assignment v : H → V and
an involution i,

(iii) E, the edge set, is defined by the 2-cycle of i in H (self-edges at vertices
are allowed),
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(iv) L, the set of legs, is defined by the fixed points of i and endowed with
a bijective correspondence with a set of markings,

(v) the pair (V,E) defines a connected graph,
(vi) for each vertex v ∈ V, the stability condition holds:

2g(v)− 2 + n(v) > 0 if d(v) = 0,

where (v) is the valence of Γ at v including both edges and legs,
(vii) the degree condition holds∑

v∈V

d(v) = β.

An automorphism of Γ consist of automorphisms of the sets V and H which
leave invariant the structures g, d, i, and v (and hence respect E). Let Aut(Γ)
denote the automorphism group of Γ.

The genus of a stable graph Γ is defined by

g(Γ) =
∑
v∈V

g(v) + h1(Γ).

A boundary stratum of the moduli space Mg,n(X,β) of stable maps naturally
determines a stable graph of genus g, degree d with n legs by considering the
dual graph of a generic pointed domain curve parameterized by the stratum.
Let Gg,n,β(X) be the set of isomorphism classes of X-valued stable graphs of
genus g and degree β with n legs. We also define GLoc

g,n,β(X) to be the set of
isomorphism classes of X-valued stable graphs of genus g, degree β, n legs and
extra assignment

p : V → {0, 1}.

The set {0, 1} in the assignment p will correspond to two fixed points of the
action (C∗)2 on P1 in the localization formula (10) and (30).

To each stable graph Γ, we associate the moduli space MΓ which is the
substack of the product ∏

v∈V

Mg(v),n(v)(X,β(v))

cut out by the inverse image of the diagonal ∆X ⊂ X×X under the evaluation
maps associated to all edges e = (h, h′) ∈ E,∏

v∈V

Mg(v),n(v)(X,β(v))
eve−−→ X ×X.

Let πv be the projection from MΓ to Mg(v),n(v)(X,β(v)) associated to the
vertex v. There is a canonical morphism

ξΓ :MΓ →Mg,n(X,β)(31)

with the image equal to the boundary stratum associated to the graph Γ. To
construct ξΓ, a family of stable maps over MΓ is required. Such a family is
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easily obtained by gluing pull-backs of the universal families over each of the
Mg(v),n(v)(X,β(v)) along the sections corresponding to half-edges. The moduli

space MΓ carries a natural virtual fundamental class [MΓ]
vir induced by the

Gysin pull-back along diagonals

[MΓ]
vir =

∏
e∈E

ev−1
e (∆) ∩

∏
v∈V

[Mg(v),n(v)(X,β(v))]
vir.

4.3. Strata algebra

For any target X, we can associate a Q-algebra, called the X-valued strata
algebra [1], which represents tautological classes on Mg,n(X,β). In this paper,
we will restrict to the subalgebra of X-valued strata algebra associated to a
fixed line bundle on X. Let S be a line bundle over X. There are two canonical
line bundles on the universal curve

π : Cg,n,β(X) →Mg,n(X,β).

The first one is the relative dualizing sheaf ωπ and the second one is the pull-
back f∗S of the line bundle S via the universal map,

f : Cg,n,β(X) → X.

Let si be the i-th section of π, and let

Di ⊂ Cg,n,β(X)

be the corresponding divisor. Denote by ωlog the relative logarithmic line bun-
dle

ωπ

( n∑
i

Di

)
with the first Chern class c1(ωlog). Let ξ = c1(f

∗S) be the first Chern class of

the pull-back of S. Tautological classes ψ, ξ, and η classes on Mg,n(X,β) are
defined as follows:

ψi := c1(s
∗
iωπ), ξi := s∗i ξ, ηa,b = π∗(c1(ωlog)

aξb).

Definition 13. A decorated X-valued stable graph [Γ, γ] is an X-valued stable
graph Γ ∈ Gg,n,β(X) together with the following decoration data γ:

(i) each leg i ∈ L is decorated with a monomial ψa
i ξ

b
i ,

(ii) each half-edge h ∈ H \ L is decorated with a monomial ψa
h,

(iii) each edge e ∈ E is decorated with a monomial ξae ,
(iv) each vertex in V is decorated with a monomial in the variables

{ηa,b}a+b≥2.

Consider the Q-vector space Sg,n,β(X,S) whose basis consists of the isomor-
phism classes of a decorated X-valued stable graph [Γ, γ].

There is a product structure on Sg,n,β(X,S) which generalizes the intersec-

tion product on the strata algebra Sg,n of Mg,n ([1]). If we assign a grading

deg[Γ, γ] = |E|+ degC(γ),
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to each basis element [Γ, γ], Sg,n,β(X) is a graded Q-algebra

Sg,n,β(X,S) =

∞⊕
k=0

Sk
g,n,β(X,S).

Via this intersection product, Sg,n,β(X,S) is a Q-algebra which we call the
strata algebra (associated to S) following [1, 10].

To each element [Γ, γ] ∈ Sg,n,β(X,S), we assign a cycle class ξΓ∗[γ] obtained
by the push-forward via

MΓ →Mg,n(X,β)

of the action of the product of the ψ, ξ and η decorations on [MΓ]
vir

ξΓ∗[γ] := ξΓ∗

(
γ ∩ [MΓ]

vir
)
∈ A∗(Mg,n(X,β))Q.

Then ξΓ defines a Q-linear map

q : Sg,n,β(X,S) → A∗(Mg,n(X,β)), q([Γ, γ]) = ξΓ∗[γ]

and it is known that the kernel of q is an ideal. We denote by R∗
S(Mg,n(X,β))

the image of q. We write

RX,S :=
⊕

n∈Z, β∈H2(X,Z)

R∗
S(Mg,n(X,β)).
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