DOI QR코드

DOI QR Code

Light and Electron Microscopy Studies Elucidating Mechanisms of Tomato Leaf Infection by Pseudocercospora fuligena

  • Zelalem Mersha (Virginia State University) ;
  • Girma Birru (Agroecosystem Management Research Unit, USDA-ARS) ;
  • Bernhard Hau (Leibniz Universitat Hannover, Institute of Horticultural Production Systems)
  • Received : 2022.07.26
  • Accepted : 2022.12.28
  • Published : 2023.04.01

Abstract

The fungal pathogen Pseudocercospora fuligena, known to affect tomatoes in the tropics and subtropics, has been reported from temperate climates including the United States and Turkey in recent years. In this study, an isolate from fresh tomatoes and the disease it causes were characterized and infection mechanisms investigated. Macroscopically, both sides of tomato leaves show indistinct effuse patches but prolific production of fuliginous lesions is conspicuous on the abaxial side first but also on the adaxial side later on as infection progressed. Microscopically, fascicles of conidiophores (11-128 ㎛ × 3.5-9 ㎛) arising from stromata and conidia with up to 12 septations were observed. Molecular characterization of the isolate revealed high homology (99.8%) to other P. fuligena isolated from tomatoes in Turkey. Out of the 10 media tested, P. fuligena grew significantly well and sporulated better on unsealed tomato oatmeal agar and carrot leaf decoction agar, both supplemented with CaCO3. Direct transfer of conidia from profusely sporulating lesions was the easiest and quickest method of isolation for in-vitro studies. Light and scanning electron microscopy on cleared and intact tomato leaves further confirmed stomatal penetration and egress as well as prevalence of primary and secondary infection hyphae. In situ, blocked stomatal aperture areas of 154, 401, and 2,043 ㎛2 were recorded at 7, 12, and 17 days after inoculation, respectively. With the recent expanded horizon of the pathosystem and its consequential impact, such studies will be useful for a proper diagnosis, identification and management of the disease on tomato worldwide.

Keywords

References

  1. Babu, A. M., Kumar, V. and Govindaiah. 2002. Surface ultra-structural studies on the infection process of Pseudocercospora mori causing grey leaf spot disease in mulberry. Mycol. Res. 106:938-945.  https://doi.org/10.1017/S095375620200624X
  2. Blazquez, C. H. and Alfieri, S. A. 1974. Cercospora leaf mold of tomato. Phytopathology 64:443-445.  https://doi.org/10.1094/Phyto-64-443
  3. Blodgett, J. T. and Swart, W. J. 2002. Infection, colonization, and disease of Amaranthus hybridus leaves by the Alternaria tenuissima group. Plant Dis. 86:1199-1205.  https://doi.org/10.1094/PDIS.2002.86.11.1199
  4. Bruzzese, E. and Hasan, S. 1983. A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathol. 32:335-338.  https://doi.org/10.1111/j.1365-3059.1983.tb02841.x
  5. Crous, P. W. and Braun, U. 2003. Mycosphaerella and its anamorphs: 1. names published in Cercospora and Passalora. CBS Biodiversity Series 1. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands. 571 
  6. Crous, P. W., Braun, U., Hunter, G. C., Wingfield, M. J., Verkley, G. J. M., Shin, H.-D., Nakashima, C. and Groenewald, J. Z. 2013. Phylogenetic lineages in Pseudocercospora. Stud. Mycol. 75:37-114.  https://doi.org/10.3114/sim0005
  7. Crous, P. W., Groenewald, J. Z., Mansilla, J. P., Hunter, G. C. and Wingfield, M. J. 2004. Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Stud. Mycol. 50:195-214. 
  8. de Luna, L. Z., Watson, A. K. and Paulitz, T. C. 2002. Reaction of rice (Oryza sativa) cultivars to penetration and infection by Curvularia tuberculata and C. oryzae. Plant Dis. 86:470-476.  https://doi.org/10.1094/PDIS.2002.86.5.470
  9. Deighton, F. C. 1976. Studies on Cercospora and allied genera. VI. Pseudocercospora Speg., Pantospora Cif. and Cercoseptoria Petr. Mycol. Pap. 140:1-168. 
  10. Gul, E., Karakaya, A. and Ergul, A. 2021. First report of Pseudocercospora fuligena in tomato greenhouses in Turkey. J. Plant Pathol. 103:745-746.  https://doi.org/10.1007/s42161-021-00824-2
  11. Halfeld-Vieira, B. A., Nechet, K. L. and Barbosa, N. R. 2006. Pseudocercospora fuligena causing leaf mold of tomato in Roraima, Brazil. Fitopatol. Bras. 31:320. 
  12. Hartman, G. L., Chen, S. C. and Wang, T. C. 1991. Cultural studies and pathogenicity of Pseudocercospora fuligena, the causal agent of black leaf mold of tomato. Plant Dis. 75:1060-1063.  https://doi.org/10.1094/PD-75-1060
  13. Hartman, G. L. and Wang, T. C. 1992. Black leaf mold development and its effect on tomato yield. Plant Dis. 76:462-465.  https://doi.org/10.1094/PD-76-0462
  14. Hartman, G. L. and Wang, T. C. 1993. Resistance in Lycopersicon species to black leaf mold caused by Pseudocercospora Fuligena. Euphytica 71:125-130.  https://doi.org/10.1007/BF00023475
  15. Hau, B. and Mersha, Z. 2009. Spatio-temporal dynamics of black leaf mold (P. fuligena) from two-line sources. In: Proceedings of the 10th International Epidemiology Workshop, eds. by D. M. Gadoury, R. C. Seem, M. M. Moyer and W. E. Fry. pp. 66-67. Cornell University, New York, NY, USA. 
  16. Hsieh, W. H. and Goh, T. K. 1990. Cercospora and similar fungi from Taiwan. Maw Chang Book Company, Taipei, Taiwan. 376 pp. 
  17. Joosten, M. H. A. J. and de Wit, P. J. G. M. 1999. The tomato-Cladosporium Fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annu. Rev. Phytopathol. 37:335-367. https://doi.org/10.1146/annurev.phyto.37.1.335
  18. Kilpatrick, R. A. and Johnson, H. W. 1956. Sporulation of Cercospora species on carrot leaf decoction agar. Phytopathology 46:180-181. 
  19. Lookabaugh, E. C., Thomas, A., Shew, B. B., Butler, S. C. and Louws, F. J. 2018. First report of black leaf mold of tomato caused by Pseudocercospora fuligena in North Carolina. Plant Dis. 102:442. 
  20. Mehta, C. R. and Patel, N. R. 2001. StatXact-5 for windows manual. Cytel Software Cooperation, Cambridge, MA, USA. 
  21. Mersha, Z. and Hau, B. 2009. Comparative epidemics of black leaf mold (Pseudocercospora fuligena) and early blight (Alternaria solani) on tomato (Solanum lycopersicum) cultivated in four different greenhouse setups in Thailand. Acta Hortic. 808:71-78.  https://doi.org/10.17660/ActaHortic.2009.808.9
  22. Mersha Z., Zhang, S. and Hau, B. 2014a. Effects of temperature, wetness duration and leaf age on incubation and latent periods of black leaf mold (Pseudocercospora fuligena) on fresh market tomatoes. Eur. J. Plant Pathol. 138:39-49.  https://doi.org/10.1007/s10658-013-0295-3
  23. Mersha, Z., Zhang, S. and Hau, B. 2014b. Seasonal dynamics of black leaf mould (Pseudocercospora fuligena) on greenhouse-grown fresh market tomatoes. J. Phytopathol. 162:158- 169.  https://doi.org/10.1111/jph.12165
  24. Roldan, E. F. 1938. New or noteworthy lower fungi of the Philippines Islands, II. Philipp. J. Sci. 66:7-13. 
  25. Sherf, A. F. and MacNab, A. A. 1986. Vegetable diseases and their control. 2nd ed. John Wiley and Sons, New York, NY, USA. 736 pp. 
  26. Subedi, N., Testen, A. L., Baysal-Gurel, F. and Miller, S. A. 2015. First report of black leaf mold of tomato caused by Pseudocercospora fuligena in Ohio. Plant Dis. 99:285. 
  27. Sudermann, M. A., McGilp, L., Vogel, G., Regnier, M., Jaramillo, A. R. and Smart, C. D. 2022. The diversity of Passalora fulva isolates collected from tomato plants in U.S. high tunnels. Plant Dis. 112:1350-1360. 
  28. Thomma, B. P. H. J., van Esse, H. P., Crous, P. W. and de Wit, P. J. G. M. 2005. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol. Plant Pathol. 6:379-393. 
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876-4882.  https://doi.org/10.1093/nar/25.24.4876
  30. Ulloa, M. and Hanlin, R. T. 2000. Illustrated dictionary of mycology. APS Press, St. Paul, MN, USA. 448 pp. 
  31. Wang, T.-C., Black, L. L. and Hsieh, W.-H. 1996. Seasonal variation in severity of tomato black leaf mold in Taiwan, host infection and conidial survival of Pseudocercospora fuligena. Plant Pathol. Bull. 5:154-162. 
  32. Wang, T. C., Hartman, G. L., Hsieh, W. H. and Black, L. L. 1995. Reactions of solanaceous species to Pseudocercospora fuligena, the causal agent of tomato black leaf mold. Plant Dis. 79:661-665.  https://doi.org/10.1094/PD-79-0661
  33. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to molecular methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA. 
  34. Wichura, A. 2007. Entwicklung einer PCR basierten methode zur quantifizierung der erreger des echten Gurkenmehltaus, Podosphaera xanthii und Golovinomyces orontii, in Mischinfektionen [Development of a PCR-based method for quantifying the pathogens of powdery mildew of cucumbers, Podosphaera xanthii and Golovinomyces orontii, in mixed infections]. Ph.D. thesis. Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany (in Deutsch). 
  35. Zaccaron, A. Z. and Stergiopoulos, I. 2020. First draft genome resource for the tomato black leaf mold pathogen Pseudocercospora fuligena. Mol. Plant-Microbe Interact. 33:1441-1445.  https://doi.org/10.1094/MPMI-06-20-0139-A