DOI QR코드

DOI QR Code

Variability in Responses to Phoma medicaginis Infection in a Tunisian Collection of Three Annual Medicago Species

  • Mounawer Badri (Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria) ;
  • Amina Ayadi (Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria) ;
  • Asma Mahjoub (Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria) ;
  • Amani Benltoufa (Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria) ;
  • Manel Chaouachi (Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria) ;
  • Rania Ranouch (Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria) ;
  • Najah Ben Cheikh (Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria) ;
  • Aissa Abdelguerfi (Ecole Nationale Superieure Agronomique d'Alger) ;
  • Meriem Laouar (Ecole Nationale Superieure Agronomique d'Alger) ;
  • Chedly Abdelly (Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria) ;
  • Ndiko Ludidi (Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape) ;
  • Naceur Djebali (Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria)
  • 투고 : 2022.09.19
  • 심사 : 2022.12.12
  • 발행 : 2023.04.01

초록

Spring black stem and leaf spot, caused by Phoma medicaginis, is an issue in annual Medicago species. Therefore, in this study, we analyzed the response to P. medicaginis infection in a collection of 46 lines of three annual Medicago species (M. truncatula, M. ciliaris, and M. polymorpha) showing different geographic distribution in Tunisia. The reaction in the host to the disease is explained by the effects based on plant species, lines nested within species, treatment, the interaction of species × treatment, and the interaction of lines nested within species × treatment. Medicago ciliaris was the least affected for aerial growth under infection. Furthermore, the largest variation within species was found for M. truncatula under both conditions. Principal component analysis and hierarchical classification showed that M. ciliaris lines formed a separate group under control treatment and P. medicaginis infection and they are the most vigorous in growth. These results indicate that M. ciliaris is the least susceptible in response to P. medicaginis infection among the three Medicago species investigated here, which can be used as a good candidate in crop rotation to reduce disease pressure in the field and as a source of P. medicaginis resistance for the improvement of forage legumes.

키워드

과제정보

This research was funded by the Tunisian-Algerian bilateral project (2013-2015), and the Tunisian Ministry of Higher Education and Scientific Research (CBBC02 LR15) and the National Research Foundation of South Africa (GUN 120 114) in the framework of the Tunisian-South African Joint Research Collaboration Program (2019-2023).

참고문헌

  1. Andrew, W. D. 1962. Susceptibility to damping-off in seedlings of Medicago denticulata Willd. and M. minima (L.) Bart. during the early post-emergence period. Aust. J. Biol. Sci. 16:281-283. https://doi.org/10.1071/BI9630281
  2. Arraouadi, S., Badri, M., Jaleel, C. A., Djebali, N., Ilahi, H., Huguet, T. and Aouani, M. E. 2009. Analysis of genetic variation in natural populations of Medicago truncatula of Southern Tunisian ecological areas, using morphological traits and SSR markers. Trop. Plant Biol. 2:122-132. https://doi.org/10.1007/s12042-009-9034-5
  3. Arraouadi, S., Badri, M., Zitoun, A., Huguet, T. and Aouani, M. E. 2011. Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula. Russ. J. Plant Physiol. 58:316-323. https://doi.org/10.1134/S1021443711020026
  4. Badri, M., Ben Cheikh, N., Mahjoub, A. and Abdelly, C. 2016a. Morpho-phenological diversity among natural populations of Medicago polymorpha of different Tunisian ecological areas. Afr. J. Biotechnol. 15:1330-1338. https://doi.org/10.5897/AJB2015.14950
  5. Badri, M., Chardon, F., Huguet, T. and Aouani, M. E. 2011. Quantitative trait loci associated with drought tolerance in the model legume Medicago truncatula. Euphytica 181:415-428. https://doi.org/10.1007/s10681-011-0473-3
  6. Badri, M., Ilahi, H., Huguet, T. and Aouani, M. E. 2007. Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical geographical factors. Genet. Res. 89:107-122. https://doi.org/10.1017/S0016672307008725
  7. Badri, M., Toumi, G., Mahfoudh, S., Hessini, K., AbdelguerfiLaouar, M., Abdelguerfi, A., Aouani, M. E., Abdelly, C. and Djebali, N. 2016b. Diversity of response to drought in a collection of lines of Medicago truncatula, M. ciliaris and M. polymorpha. Crop Sci. 56:3125-3132. https://doi.org/10.2135/cropsci2016.04.0224
  8. Badri, M., Zitoun, A., Soula, S., Ilahi, H., Huguet, T. and Aouani, M. E. 2008. Low levels of quantitative and molecular genetic differentiation among natural populations of Medicago ciliaris Kroch. (Fabaceae) of different Tunisian eco-geographical origin. Conserv. Genet. 9:1509-1520. https://doi.org/10.1007/s10592-007-9483-z
  9. Barbetti, M. J. 1983. Fungal foliage diseases of pasture legumes. J. Dept. Agric. West. Aust. 24:4.
  10. Barbetti, M. J. 2007. Resistance in annual Medicago spp. to Phoma medicaginis and Leptosphaerulina trifolii and its relationship to induced production of a phytoestrogen. Plant Dis. 91:239-244. https://doi.org/10.1094/PDIS-91-3-0239
  11. Barbetti, M. J., You, M. and Jones, R. A. C. 2020. Medicago truncatula and other annual Medicago spp.: interactions with root and foliar fungal, oomycete, and viral pathogens. In: The model legume Medicago truncatula, ed. by F. J. de Bruijn, pp. 293-306. John Wiley & Sons, Inc., Hoboken, NJ, USA.
  12. Becard, G. and Fortin, J. A. 1988. Early events of vesiculararbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108:211-218. https://doi.org/10.1111/j.1469-8137.1988.tb03698.x
  13. Boerema, G. H., Dorenbosch, M. M. J. and Leffring, L. 1965. A comparative study of the black stem fungi on lucerne and red clover and the footrot fungus on pea. Neth. J. Plant Pathol. 71:79-89. https://doi.org/10.1007/BF01982419
  14. Brown, S. P., Grillo, M. A., Podowski, J. C. and Heath, K. D. 2020. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome 8:139.
  15. Djebali, N. 2008. Etude des mecanismes de resistance de la plante modele Medicago truncatula vis-a-vis de deux agents pathogenes majeurs des legumineuses cultivees: Phoma medicaginis et Aphanomyces euteiches. Ph.D. thesis. Universite Toulouse III - Paul Sabatier, Castanet-Tolosan, France. 191pp.
  16. Djebali, N. 2013. Aggressiveness and host range of Phoma medicaginis isolated from Medicago species growing in Tunisia. Phytopathol. Mediterr. 52:3-15.
  17. Ellwood, S. R., Kamphuis, L. G. and Oliver, R. P. 2006. Identification of sources of resistance to Phoma medicaginis isolates in Medicago truncatula SARDI core collection accessions, and multigene differentiation of isolates. Phytopathology 96:1330-1336. https://doi.org/10.1094/PHYTO-96-1330
  18. Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to quantitative genetics. 4th ed. Longmans Green, Harlow, Essex, UK. 464 pp.
  19. Graham, J. H., Frosheiser, F. I., Stuteville, D. L. and Erwin, D. C. 1979. A compendium of alfalfa diseases. American Phytopathological Society, St. Paul, MN, USA. 65 pp.
  20. Haddoudi, L., Hdira, S., Ben Cheikh, N., Mahjoub, A., Abdelly, C., Ludidi, N. and Badri, M. 2021. Assessment of genetic diversity in Tunisian populations of Medicago polymorpha based on SSR markers. Chil. J. Agric. Res. 81:53-61. https://doi.org/10.4067/S0718-58392021000100053
  21. Keller, B., Feuillet, C. and Messmer, M. 2000. Genetics of disease resistance. In: Mechanisms of resistance to plant diseases, eds. by A. J. Slusarenko, R. S. S. Fraser and L. C. van Loon, pp. 101-160. Kluwer Academic Publishers, Dordrecht, Netherlands.
  22. Lamprecht, S. C. 1986. Reaction of annual Medicago species to Colletotrichum crown rot caused by Colletotrichum trifolii. Phytophylactica 18:183-185.
  23. Lamprecht, S. C. and Knox-Davies, P. S. 1984. Preliminary survey of foliage diseases of annual Medicago spp. in South Africa. Phytophylactica 16:177-183.
  24. Lesins, K. A. and Lesins, I. 1979. Genus Medicago (Leguminosae): a taxonomic study. Dr. W. Junk Publishers, The Hague, Netherlands. 228 pp.
  25. Moussart, A., Onfroy, C., Lesne, A., Esquibet, M., Grenier, E. and Tivoli, B. 2007. Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). Eur. J. Plant Pathol. 117:57-69. https://doi.org/10.1007/s10658-006-9071-y
  26. O'Neill, N. R. and Bauchan, G. R. 2000. Sources of resistance to anthracnose in the annual Medicago core collection. Plant Dis. 84:261-267. https://doi.org/10.1094/PDIS.2000.84.3.261
  27. Pilet-Nayel, M.-L., Prosperi, J.-M., Hamon, C., Lesne, A., Lecointe, R., Le Goff, I., Herve, M., Deniot, G., Delalande, M., Huguet, T., Jacquet, C. and Baranger, A. 2009. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopathology 99:203-208. https://doi.org/10.1094/PHYTO-99-2-0203
  28. Rai, M. K., Tiwari, V. V., Irinyi, L. and Kovics, G. J. 2014. Advances in taxonomy of genus Phoma: polyphyletic nature and role of phenotypic traits and molecular systematics. Indian J. Microbiol. 54:123-128. https://doi.org/10.1007/s12088-013-0442-8
  29. Reid, R., Konopka, J. and Rihana, J. R. 1989. Needs and priorities collection of annual medic germplasm. In: Introducing of the ley farming to the Mediterranean basin, eds. by S. Christian, L. Materon, M. Falcinelli and P. Cocks, pp. 253-270. International Centre for Agricultural Research in the Dry Area, Aleppo, Syria.
  30. Sampson, K. and Western, J. H. 1941. Disease of British grasses and herbage legumes. Cambridge University Press, London, UK. 85 pp.
  31. Small, E. and Jomphe, M. 1989. A synopsis of the genus Medicago (Leguminosae). Can. J. Bot. 67:3260-3294. https://doi.org/10.1139/b89-405
  32. Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., Gentzbittel, L., Childs, K. L., Yandell, M., Gundlach, H., Mayer, K. F. X., Schwartz, D. C. and Town, C. D. 2014. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312.
  33. Tivoli, B., Baranger, A., Sivasithamparam, K. and Barbetti, M. J. 2006. Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann. Bot. 98:1117-1128. https://doi.org/10.1093/aob/mcl132
  34. Yaege, J. R. and Stuteville, D. L. 2002. Reactions of accessions in the annual Medicago core germ plasm collection to Erysiphe pisi. Plant Dis. 86:312-315. https://doi.org/10.1094/PDIS.2002.86.3.312
  35. Young, N. D. and Udvardi, M. 2009. Translating Medicago truncatula genomics to crop legumes. Curr. Opin. Plant Biol. 12:193-201. https://doi.org/10.1016/j.pbi.2008.11.005