DOI QR코드

DOI QR Code

칼륨 및 칼슘 이온으로 치환된 제올라이트의 대기오염물질 흡착 성능 평가

Evaluation of Air Pollutant Adsorption Performance of Potassium and Calcium Ion-Exchanged Zeolite

  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Ye Hwan Lee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Sung Su Kim (Department of Environmental Energy Engineering, Kyonggi University)
  • 투고 : 2023.03.31
  • 심사 : 2023.05.10
  • 발행 : 2023.06.10

초록

본 연구에서는 이온교환 공정에서 사용된 제올라이트의 재이용을 위해 물리화학적 특성 분석 및 대기오염물질(VOCs, SO2, CO2) 흡착 성능을 평가하였다. SEM 및 XRD 분석을 통해 사용된 제올라이트의 표면 특성을 확인하였으며, XRF 분석을 통해 조성, BET 분석을 통해 비표면적을 측정하였다. 사용된 제올라이트의 표면 특성 변화는 없었지만 칼륨 및 칼슘의 함량이 증가하고 비표면적이 감소하였다. 사용된 제올라이트의 톨루엔, 황산화물, 이산화탄소 흡착 성능 평가를 수행하였으며, 기존 제올라이트 대비 성능이 증진됨을 확인하였다. 특히 톨루엔, 황산화물에 대해서는 흡착량이 각각 2.6배, 2.3배 증가하였다. 이는 사용된 제올라이트 조성 변화에 따라 각각 중합반응 증진, 염기점 증가에 의한 것으로 판단된다.

In this study, the physicochemical characterization and adsorption performance of air pollutants (VOCs, SO2, and CO2) were evaluated for the recycling of zeolite used in the ion exchange process. The surface characteristics of the zeolite used were confirmed through Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis, and the composition and specific surface area were measured through X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET). There was no change in the surface properties of the used zeolite, but the content of potassium and calcium increased and the specific surface area decreased. The toluene, sulfur oxides, and carbon dioxide adsorption performance of the used zeolite was evaluated, and it was confirmed that the performance was improved compared to the fresh zeolite. In particular, for toluene and sulfur oxides, the adsorption amount increased by 2.6 times and 2.3 times, respectively, which might be due to the enhancement of the polymerization reaction and the increase of the base point, according to the composition of the used zeolite.

키워드

과제정보

본 연구는 2020학년도 경기대학교 학술연구비(일반연구과제) 지원에 의하여 수행되었음.

참고문헌

  1. Y. P. Kim, Air Pollution in seoul caused by aerosols, J. Korean Soc. Atmos. Environ., 22, 535-553 (2006).
  2. S. Moon and J. Hyun, Comparision of Ca- and Na- based dry sorbent in desulfurization characteristic, J. Korean Soc. Environ. Eng., 31, 21-28 (2009).
  3. H. Kim, J. kim, J. Ryu, S. Kang, T. Kim, N. Park, and K. Woo, Dry Removal of sulfur oxides in the flue gas, J. Energy Clim. Change, 12, 11-25 (2009).
  4. J. Lim, Y. Choi, G. Kim, H. Song, and J. Kim, Modeling of Wet Flue Gas Desulfurization Process for Utilization of Low-Grade Limestone. Korean Chem. Eng. Res., 57, 743-748 (2019).
  5. D. H. Song, J. H. Kang, H. S. Park, H. Song, and Y. G. Chung, Simultaneous removal of NO and SO2 using microbubble and reducing agent, Clean Technol., 27, 341-349 (2021).
  6. L. Shi, K. Yang, Q. Zhao, H. Wang, and Q. Cui, Characterization and Mechanisms of H2S and SO2 Adsorption by Activated Carbon, Energy Fuels, 29, 6678-6685 (2015). https://doi.org/10.1021/acs.energyfuels.5b01696
  7. A. S. K. Warahena and Y. K. Chuah, Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology, Environ Sci. Technol., 43, 6101-6105 (2009). https://doi.org/10.1021/es900626e
  8. F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, Treatment of gas containing hydrophobic VOCs by a hybrid absorption-pervaporation process: The case of toluene, Chem. Eng. Sci., 62, 2576-2589 (2007). https://doi.org/10.1016/j.ces.2007.02.001
  9. S. W. Kang, B. H. Min, and S. S. Suh, A study on cleaning process for benzene recovery in activated carbon bed, J. Korean Oil Chem. Soc., 19, 108-116 (2002)
  10. K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li and L. Li, Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites, Chem. Eng. J., 372, 1122-1133 (2019). https://doi.org/10.1016/j.cej.2019.04.218
  11. Y. Jang, S. M. Lee, H. Yang, and S. S. Kim, A study on the application of adsorption function in metal filter for the removal of VOCs in underground facilities, Appl. Chem. Eng., 30, 633-638 (2019).
  12. J. T. Yeh, H. W. Pennline, and K. P. Resnik, Study of CO2 absorption and desorption in a packed column, Energy Fuels, 15, 274-278 (2001). https://doi.org/10.1021/ef0002389
  13. R. Besson, M. R. Vargas, and L. Favergeon, CO2 adsorption on calcium oxide: An atomic-scale simulation study, Surf. Sci., 606, 490-495 (2012). https://doi.org/10.1016/j.susc.2011.11.016
  14. Y. H. Jang, Y. I. Noh, S. M. Lee, and S. S. Kim, A study on the modification of NH4+ Y-zeolite for improving adsorption/desorption performance of benzene, Clean Technol., 25, 33-39 (2019).
  15. Y. H. Lee, J. Kim, J. Lee, B. Park, and S. S. Kim, A study on the modified zeolite for the removal of calcium ion in a potassium ion coexistence solution, Appl. Chem. Eng., 30, 726-730 (2019).
  16. H. Hong, A. A. Adeloudun, and Y. Jo, Preparation of KOH impregnated AC pellets for selective CO2 capture, J. Korean Soc. Odor Res. Eng., 12, 203-209 (2013). https://doi.org/10.11161/jkosore.2013.12.4.203