DOI QR코드

DOI QR Code

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process

수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구

  • Younghee Jang (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Sung Su Kim (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2023.04.10
  • Accepted : 2023.05.02
  • Published : 2023.06.10

Abstract

In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

본 연구는 수소 경제 사회의 안전 확보를 위해 수소 연료전지 후단 배출된 미반응 수소를 안정적으로 산화하는 방안에 대해 논의하였다. 안전 시스템은 미반응 수소를 에너지원 없이 제거할 수 있는 상온 산화촉매를 충진하였으며, 이때 반응으로 배출되는 산화열은 안정적으로 회수할 수 있는 열 회수 장치를 연계하고자 하였다. 그 결과, 수소 산화 시스템의 충진 조건에 따라 시스템 내 압력 및 유체 흐름이 변화함을 CFD 분석을 통해 확인하였다. 또한 배가스 온도, 열 회수기 내 유량 및 압력조건을 최적화하여 300 ℃ 이상의 배가스 산화 열원을 40 ℃ 이상의 온수를 확보하는 방식으로 폐열을 회수할 수 있음을 확인하였다. 본 연구를 통해 수소 연료전지와 같은 중·소규모 사업장에 적용된 수소 활용 공정을 실증 규모로 평가하여 안전 시스템으로의 가능성을 확인하였다. 추후 실증화 연구를 통해 예측하지 못한 수소 안전사고에 대해 대응할 수 있는 안전 가이드로 활용될 수 있다고 판단된다.

Keywords

Acknowledgement

본 연구는 2020학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. S. Lee, K. Kim, D. Ko, Y. Yoon, and Y. Cho, An experimental study on the combustion and emission characteristics of hydrogen enriched lpg fuel in a constant volume chamber, Transaction of the Korean Hydrogen and New Energy Society, 23, 227-235 (2012). https://doi.org/10.7316/KHNES.2012.23.3.227
  2. P. Biswas and C. Y. Wu, Control of toxic metal emissions from combustors using sorbents: A Review, J. Air Waste Manag. Assoc., 48, 113-127 (1998). https://doi.org/10.1080/10473289.1998.10463657
  3. Y. Manohara, S. E. Hosseini, B. Butler, H. Alzhahrani, B. T. F. Senior, T. Ashuri, and J. Krohn, Hydrogen fuel cell vehicles; current status and future prospect, Appl. Sci., 9, 2296 (2019).
  4. S. E. Hosseini, A. M. Andwari, M. A. Wahid, and G. Bagheri, A review on green energy potentials in Iran, Renew. Sust. Energ. Rev., 27, 533-545 (2013). https://doi.org/10.1016/j.rser.2013.07.015
  5. M. Granovskii, I. Dincer, and M. A. Rosen, Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: Economic factors, Int. J. Hydrog. Energy, 32, 927-931 (2007).
  6. L. Giorgi1 and F. Leccese, Fuel cells: Technologies and applications, The Open Fuel Cells Journal, 6, 1-20, (2013).
  7. A. Kerviel, A. Pesyridis, A. Mohammed, and D. Chalet, An evaluation of turbocharging and supercharging options for high-efficiency fuel cell electric vehicles, Appl. Sci., 8, 2474 (2018).
  8. C. Wang, M. H. Nehrir, and H. Gao, Control of PEM fuel cell distributed generation systems, IEEE Trans. Energy Convers., 21, 586-595 (2006). https://doi.org/10.1109/TEC.2005.860404
  9. T. Somekawa, K. Nakamura, T. Kushi, T. Kume, K. Fujita, and H. Yakabe, Examination of a high-efficiency solid oxide fuel cell system that reuses exhaust gas, Appl. Therm. Eng., 114, 1387-1392 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.096
  10. M. Y. Ayad, M. Becherif, and A. Henni, Vehicle hybridization with fuel cell, supercapacitors and batteries by sliding mode control, Renew. Energ., 36, 2627-2634 (2011). https://doi.org/10.1016/j.renene.2010.06.012
  11. U. K. Chakraborty, A new model for constant fuel utilization and constant fuel flow in fuel cells, Appl. Sci., 9, 1066 (2019).
  12. A. Costilla-Reyes, C. Erbay, S. Carreon-Bautista, A. Han, and E. Sanchez-Sinencio, A time-interleave-based power management system with maximum power extraction and health protection algorithm for multiple microbial fuel cells for internet of things smart nodes, Appl. Sci., 8, 2404 (2018).
  13. S.-M. Lim, S.-W. Sung, Y.-K. Lee, and J.-W. Kim, Technical trends of hydrogen fuel cell railway rolling stock, 2018 Annual Meeting and Autumn Conference of the Korean Society for Railway, October 18-19, Jeju, Korea (2018).
  14. C. Kim and S. Kim, Technology development trends for environmentally friendly hydrogen railway vehicles, Railw. J., 23, 15-20 (2020).
  15. H. J. Ahn, S. H. Lee, N. Hur, M. K. Lee, and G. Yong, The numerical simulation of hydrogen jet diffusion for hydrogen leakage in the enclosed geometry, J. Comput. Fluids Eng., 14, 32-38 (2009).
  16. H. Xie, X. Li, and D. M. Christopher, Emergency blower ventilation to disperse hydrogen leaking from a hydrogen-fueled vehicle, Int. J. Hydrog. Energy, 40, 8230-8238 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.146
  17. H. W. Ji, H. Lee, I. Hwang, and H. Jang, Safe ventilation methods against leaks in hydrogen fuel cell rooms in homes, Energies, 15, 5434 (2022).
  18. M. R. Swain and M. N. Swain, Passive ventilation systems for the safe use of hydrogen, Int. J. Hydrogen Energy, 21, 823-835 (1996). https://doi.org/10.1016/0360-3199(96)00002-X
  19. D. Lomot and Z. Karpinski, Hydrogen oxidation over alumina-supported palladium-nickel catalysts, Res. Chem. Intermed., 41, 9171-9179 (2015). https://doi.org/10.1007/s11164-015-1935-3
  20. D. Y. Lee and S. S. Kim, A Study on the H2 oxidation over Pt/TiO2, SO2 poisoning and regeneration, Appl. Chem. Eng., 30, 731-736 (2019).
  21. S. A. Singh, K. Vishwanath, and G. Madras, Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion, ACS Appl. Mater. Interfaces, 9, 19380-19388 (2017). https://doi.org/10.1021/acsami.6b08019
  22. Y. Jang, S. M. Lee, and S. S. Kim, Effect of a modified 13X zeolite support in Pd-based catalysts for hydrogen oxidation at room temperature, RSC Adv., 11, 38047-38053 (2021). https://doi.org/10.1039/D1RA06395B
  23. Y. Jang, S. M. Lee, and S. S. Kim, A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety, J. Korea Org. Resour. Recycl. Assoc., 29, 47-54 (2021).
  24. H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog., 6, 268-289 (2018). https://doi.org/10.1016/j.tsep.2018.04.017
  25. H. Eom, Y. Jang, S. Y. Choi, S. M. Lee, and S. S. Kim, Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas, Appl. Catal. A-Gen., 590, 117365 (2020).
  26. J. Lyer, T. Moore, D. Nguyen, P. Roy, and J. Stolaroff, Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces, Appl. Therm. Eng., 209, 118192 (2022).