DOI QR코드

DOI QR Code

등온적정열량계를 이용한 BaCl2와 EDTA 킬레이션 결합 반응의 pH 영향

Influence of pH on Chelation of BaCl2 and EDTA Using Isothermal Titration Calorimetry

  • 육가은 (금오공과대학교 화학공학과) ;
  • 장지웅 (금오공과대학교 화학공학과)
  • Ga Eun Yuk (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Ji Woong Chang (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2023.04.16
  • 심사 : 2023.04.26
  • 발행 : 2023.06.10

초록

등온 적정 열량계는 리간드-수용체 사이의 킬레이션 결합 반응의 엔탈피, 깁스에너지, 엔트로피, 화학양론 등 포함한 모든 열역학적 정보를 측정하는데 유용한 기술이다. 단일독립결합모델을 이용하여 Tricine과 HEPES 완충용엑에서의 BaCl2 와 ethylenediaminetetraacetic acid (EDTA)의 킬레이션 결합에서의 열역학적 정보를 획득하였다. 등온 적정 열량계를 이용하여 pH 7~11 영역에서의 킬레이션 결합의 메커니즘과 최적의 결합 조건을 확인하였다. BaCl2와 EDTA의 결합은 자발적인 발열반응이며 pH가 증가할수록 엔트로피적 영향이 높아진다. 1:1로 결합하는 pH 영역은 pH 9.0 근처에서 매우 좁은 영역에서 나타난다.

Isothermal titration calorimetry (ITC) is a useful technique to obtain thermodynamic binding properties such as enthalpy, Gibbs free energy, entropy, and stoichiometry of the chelation reaction. A single independent binding site model was used to evaluate the thermodynamic binding properties in BaCl2 and ethylenediaminetetraacetic acid (EDTA) in Trince and HEPES buffers. ITC enables us to elucidate the binding mechanism and find an optimal chelation condition for BaCl2 and EDTA in the pH range of 7~11. Chelation of BaCl2 and EDTA is a spontaneous endothermic reaction. As pH increased, entropic contributions dominated. The optimal pH range is narrow around pH 9.0, where 1:1 binding between BaCl2 and EDTA occurs.

키워드

과제정보

이 연구는 금오공과대학교 학술연구비로 지원되었음(202002340001)

참고문헌

  1. T. Takeshita, T. A. Shimohara, and S. Maeda, Synthesis of EDTA-monoalkylamide chelates and evaluation of the surface-active properties, J. Am. Oil Chem. Soc., 59, 104-107 (1982). https://doi.org/10.1007/BF02678725
  2. J. R. Hart, EDTA-type chelating agents in everyday consumer products: Some food, cleaning, and photographic applications, J. Chem. Educ., 62, 75-76 (1985). https://doi.org/10.1021/ed062p75
  3. H. Grcman, S. Velikonja-Bolta, D. Vodnik, B. Kos, and D. Lestan, EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity, S. Afr. J. Plant Soil., 235, 105-114 (2001). https://doi.org/10.1023/A:1011857303823
  4. E. Mathuthu, A. J. V. Rensburg, D. D. Plessis, and S. Mason, EDTA as a chelating agent in quantitative 1H-NMR of biologically important ions, Biochem. Cell Biol., 99, 465-475 (2021). https://doi.org/10.1139/bcb-2020-0543
  5. X. Huang, Rationale for the successful management of EDTA chelation therapy in human burden by toxic metals, Biomed Res. Int., 2016, 1-13 (2016). https://doi.org/10.1155/2016/8274504
  6. A. Fulgenzi and M. E. Ferrero, EDTA chelation therapy for the treatment of neurotoxicity, Int. J. Mol. Sci., 20, 2-16 (2019).
  7. T. Christensen, D. M. Gooden, J. E. Kung, and E. J. Toone, Additivity and the physical basis of multivalency effects: A thermodynamic investigation of the calcium EDTA interaction, J. Am. Chem. Soc., 125, 7357-7366 (2003). https://doi.org/10.1021/ja021240c
  8. A. Velazquez-Campoy, B. Claro, O. Abian, J. Horing, L. Bourlon, R. Claveria-Gimeno, E. Ennifar, P. England, J. B. Chaires, D. Wu, G. Piszczek, C. Brautigam, S. C. Tso, H. Zhao, P. Schuck, S. Keller, and M. Bastos, A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA, Eur. Biophys. J., 50, 429-451 (2021). https://doi.org/10.1007/s00249-021-01523-7
  9. L. C. O'Brien, H. B. Root, C. C. Wei, D. Jensen, N. Shabestary, C. D. Meo, and D. J. Eder, M2+·EDTA binding affinities : A modern experiment in thermodynamics for the physical chemistry laboratory, J. Chem. Educ., 92, 1547-1551 (2015). https://doi.org/10.1021/acs.jchemed.5b00159
  10. F. M. Koehler, M. Rossier, M. Waelle, E. K. Athanassiou, L. K. Limbach, R. N. Grass, D. Gunther, and W. J. Stark, Magnetic EDTA: Coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water, Chem. Commun., 32, 4862-4864 (2009).
  11. M. Murtaza, S. A. Alarif, M. Y. Rasm, M. S. Kamal, M. Mahmoud, and M. A. Ajmi, Single step calcium sulfate scale removal at high temperature using tetrapotassium ethylenediaminetetraacetate with potassium carbonate, Nature, 12, 1-17 (2022).
  12. T. Born, C. N. Kontoghiorghe, A. Spyrou, A. Kolnagou, and G. J. Kontoghiorghes, EDTA chelation reappraisal following new clinical trials and regular use in millions of patients: Review of preliminary findings and risk/benefit assessment, Toxicol. Mech., 23, 11-17 (2013). https://doi.org/10.3109/15376516.2012.730562
  13. G. Bjorklund, J. Mutter, and J. Aaseth, Metal chelators and neurotoxicity: lead, mercury, and arsenic, Arch. Toxicol., 91, 3787-3797 (2017). https://doi.org/10.1007/s00204-017-2100-0
  14. R. A. Goyer and M. G. Cherian, Ascorbic acid and EDTA treatment of lead toxicity in rats, Life Sci., 24, 433-438 (1979). https://doi.org/10.1016/0024-3205(79)90215-7
  15. E. Robotti, F. Quasso, M. Manfredi, F. Gosetti, E. Mazzucco, C. Isidoro, and E. Marengo, Determination by ICP-MS and multivariate data analysis of elemental urine excretion profile during the EDTA chelation therapy: A case study, J. Trace Elem. Med. Biol., 62, 682 (2020).
  16. T. Zhang, J. M. Liu, X. F. Huang, B. Xia, C. Y. Su, G. F. Luo, Y. W. Xu, Y. X. Wu, Z. W. Mao, and R. L. Qiu, Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives, J. Hazard. Mater., 262, 464-471 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.069
  17. A. Velazquez-Campoy and E. Freire, Isothermal titration calorimetry to determine association constants for high-affinity ligands, Nat. Protoc., 1, 186-191 (2006). https://doi.org/10.1038/nprot.2006.28
  18. E. Freire, O. L. Mayorga, and M. Straume, Isothermal titration calorimetry, Anal. Chem., 62, 950A-959A (1990). https://doi.org/10.1021/ac00217a002
  19. J. W. Chang, A. Armaou, and R. M. Rioux, Continuous injection isothermal titration calorimetry for in situ evaluation of thermodynamic binding properties of ligand-receptor binding models, J. Phys. Chem., 125, 8075-8087 (2021). https://doi.org/10.1021/acs.jpcb.1c01821
  20. D. Prozeller, S. Morsbach, and K. Landfester, Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions, Nanoscale, 11, 19265-19273 (2019) https://doi.org/10.1039/C9NR05790K
  21. T. R. Middendorf and R. W. Aldrich, Structural identifiability of equilibrium ligand-binding parameters, J. Gen. Physiol., 149, 105-119 (2017). https://doi.org/10.1085/jgp.201611702
  22. T. R. Middendorf and R. W. Aldrich, The structure of binding curves and practical identifiability of equilibrium ligand-binding parameters, J. Gen. Physiol., 149, 121-147 (2017). https://doi.org/10.1085/jgp.201611703
  23. T. Wiseman, S. Williston, J. F. Brandts, and L. Lung-Nan, Rapid measurement of binding constants and heats of binding using a new titration calorimeter, Anal. Biochem., 179, 131-137 (1989). https://doi.org/10.1016/0003-2697(89)90213-3
  24. W. H.J. Ward and G. A. Holdgate, 7 Isothermal titration calorimetry in drug discovery, Prog. Med. Chem., 38, 309-376 (2001). https://doi.org/10.1016/S0079-6468(08)70097-3
  25. P. D. Kwong, M. L. Doyle, D. J. Casper, C. Cicala, S. A. Leavitt, S. Majeed, T. D. Steenbeke, M. Venturi, I. Chaiken, M. Fung, H. Katinger, P. W. I. H. Parren, J. Robinson, D. V. Ryk, L. Wang, D. R. Burton, E. Freire, R. Wyatt, J. Sodroski, W. A. Hendrickson, and James Arthos, HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites, Nature, 420, 678-682 (2002). https://doi.org/10.1038/nature01188
  26. Y. V. Griko, Energetics of Ca2+-EDTA interactions: calorimetric study, Biophys. Chem., 79, 117-127 (1999). https://doi.org/10.1016/S0301-4622(99)00047-2
  27. R. J. M. Hudson, D. T. Covault, and F. M. M. Morel, Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes, Mar. Chem., 38, 209-235 (1992). https://doi.org/10.1016/0304-4203(92)90035-9
  28. D. C. Harris, Quantitative Chemical Analysis, 8th ed., 236-257, W. H. Freeman and Company, NY (2010).
  29. M. CHEN and R. S. REID, Solution speciation in the aqueous Na(I)-EDTA and K(I)-EDTA systems, Can. J. Chem., 71, 763-768 (1993). https://doi.org/10.1139/v93-100
  30. D. Bhattacharyya and C. Y. Raymond Cheng, Activated carbon adsorption of heavy metal chelates from single and multicomponent systems, Environ. Prog., 6, 110-118 (1987). https://doi.org/10.1002/ep.670060213