DOI QR코드

DOI QR Code

전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F

  • Sung Eun Ji (Department of Chemistry, Kyungpook National University) ;
  • Sang Hyuk Lee (Department of Chemistry, Kyungpook National University) ;
  • Hye Jin Lee (Department of Chemistry, Kyungpook National University)
  • 투고 : 2023.03.21
  • 심사 : 2023.04.04
  • 발행 : 2023.06.10

초록

본 연구에서는 일회용 센서 칩으로 제작 가능한 스크린 프린팅된 탄소칩 전극(screen printed carbon electrode; SPCE) 표면에 전도성고분자 및 효소 티로시나아제(tyrosinase, Tyr)를 적층하여 전기화학적인 방법으로 남성 질환, 갑상선 질환 등과 연관성이 입증된 내분비계 교란 물질인 비스페놀F (bisphenol F, BPF) 검출에 적용하였다. 산소 플라즈마 처리를 통해 음전하를 띠게 한 SPCE 작업전극 표면에 양전하를 띄는 전도성 고분자인 poly(diallyldimethyl ammonium chloride) (PDDA)과 음전하를 띠는 고분자 화합물 poly(sodium 4-styrenesulfonate) (PSS) 그리고 PDDA 순서대로 정전기적인 인력으로 층을 쌓고, 최종적으로 pH (7.0)를 조절하여 음전하를 띄게 한 효소, Tyr층을 올려 PDDA-PSS-PDDA-Tyr 센서를 제작하였다. 상기 전극 센서를 기질이자 타겟분석물인 BPF 용액에 접촉하면, 전극 표면에서 Tyr 효소와 산화반응에 의해 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione)가 생성되고, 순환전압전류법과 시차펄스전압전류법을 이용하여 생성물을 0.1 V (vs. Ag/AgCl)에서 환원하면 4,4'-methylenebis(benzene-1,2-diol)이 생성되면서 발생하는 피크 전류 값의 변화를 측정함으로써, BPF의 농도를 정량적으로 분석하였다. 또한, 기존에 많은 연구에서 사용되는 인산완충생리식염수를 대체할 수 있는 이온성 액체 전해질을 사용하여 BPF의 검출 성능 결과를 비교하였다. 또한 BPF와 유사한 구조를 갖는 방해물질로 작용하는 비스페놀S에 대한 선택성을 확인하였다. 마지막으로 실험실에서 준비한 실제 시료안의 BPF의 농도를 분석하는데 제작한 센서를 적용함으로써 센서의 실제 적용 가능성을 입증하고자 하였다.

In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (NRF) grants, funded by the Korean government (Ministry of Science and ICT, MSIT) (grant numbers NRF-2019R1A2C1002710 and RS-2023-00207831).

참고문헌

  1. R. Bousoumah, V. Leso, I. Iavicoli, P. Huuskonen, S. Viegas, S. P. Porras, T. Santonen, N. Frery, A. Robert, and S. Ndaw, Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review, Sci. Total Environ., 783, 146905 (2021).
  2. K. Moriyama, T. Tagami, T. Akamizu, T. Usui, M. Saijo, N. Kanamoto, Y. Hataya, A. Shimatsu, H. Kuzuya, and K. Nakao, Thyroid hormone action is disrupted by bisphenol A as an antagonist, J. Clin. Endocrinol. Metab., 87, 5185-5190 (2002). https://doi.org/10.1210/jc.2002-020209
  3. Y. Ma, H. Liu, J. Wu, L. Yuan, Y. Wang, X. Du, R. Wang, P. W. Marwa, P. Petlulu, X. Chen, and H. Zhang, The adverse health effects of bisphenol A and related toxicity mechanisms, Environ. Res., 176, 108575 (2019).
  4. N. Oliveira, H. Marcelino, R. Azevedo, and I. Verde, Effects of bisphenol A on human umbilical arteries, Environ. Sci. Pollut. Res. Int., 30, 27670-27681 (2023).
  5. G. Frenzilli, J. Martorell-Ribera, M. Bernardeschi, V. Scarcelli, E. Jonsson, N. Diano, M. Moggio, P. Guidi, J. Sturve, and N. Asker, Bisphenol A and bisphenol S induce endocrine and chromosomal alterations in brown trout, Front. Endocrinol., 12, 645519 (2021).
  6. J.-O. Jo, K. Y. Choi, S. Gim, and Y. S. Mok, Atmospheric pressure plasma treatment of aqueous bisphenol A solution, Appl. Chem. Eng., 26, 311-318 (2015). https://doi.org/10.14478/ace.2015.1029
  7. B. Liu, H. J. Lehmler, Y. Sun, G. Xu, Q. Sun, L. G. Snetselaar, R. B. Wallace, and W. Bao, Association of bisphenol A and its substitutes, bisphenol F and bisphenol S, with obesity in united states children and adolescents, Diabetes Metab. J., 43, 59-75 (2019). https://doi.org/10.4093/dmj.2018.0045
  8. J. R. Rochester and A. L. Bolden, Bisphenol S, and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes, Environ. Health Perspect, 123, 643-650 (2015). https://doi.org/10.1289/ehp.1408989
  9. S. Kitamura, T. Suzuki, S. Sanoh, R. Kohta, N. Jinno, K. Sugihara, S. Yoshihara, N. Fujimoto, H. Watanabe, and S. Ohta, Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds, Toxicol. Sci., 84, 249-259 (2005). https://doi.org/10.1093/toxsci/kfi074
  10. M. Hyun, L. Rathor, H. J. Kim, T. McElroy, K. H. Hwang, S. Wohlgemuth, S. Curry, R. Xiao, C. Leeuwenburgh, J. D. Heo, and S. M. Han, Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells, Toxicology, 461, 152924 (2021).
  11. S. Eladak, T. Grisin, D. Moison, M. J. Guerquin, T. N'Tumba-Byn, S. Pozzi-Gaudin, A. Benachi, G. Livera, V. Rouiller-Fabre, and R. Habert, A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound, Fertil. Steril., 103, 11-21 (2015). https://doi.org/10.1016/j.fertnstert.2014.11.005
  12. X. Mu, S. Qi, J. Liu, H. Wang, L. Yuan, L. Qian, T. Li, Y. Huang, C. Wang, Y. Guo, and Y. Li, Environmental level of bisphenol F induced reproductive toxicity toward zebrafish, Sci. Total Environ., 806, 149992 (2022).
  13. S. Lee, K. S. An, H. J. Kim, H. J. Noh, J. Lee, J. Lee, K. S. Song, C. Chae, and H. Y. Ryu, Pharmacokinetics and toxicity evaluation following oral exposure to bisphenol F, Arch. Toxicol., 96, 1711-1728 (2022). https://doi.org/10.1007/s00204-022-03246-w
  14. C. A. Gely, A. Huesca, N. Picard-Hagen, P. L. Toutain, A. Berrebi, G. Gauderat, V. Gayrard, and M. Z. Lacroix, A new LC/MS method for specific determination of human systemic exposure to bisphenol A, F and S through their metabolites: Application to cord blood samples, Environ. Int., 151, 106429 (2021).
  15. H. Gallart-Ayala, E. Moyano, and M. T. Galceran, Fast liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether and their derivatives in canned food and beverages, J. Chromatogr. A, 1218, 1603-1610 (2011). https://doi.org/10.1016/j.chroma.2011.01.026
  16. J. W. Choi and H. S. Lee, Decomposition characteristics of bisphenol A by a catalytic ozonation process, Appl. Chem. Eng., 26, 463-469 (2015). https://doi.org/10.14478/ace.2015.1057
  17. I. Jordakova, J. Dobias, M. Voldrich, and J. Postka, Determination of bisphenol A, bisphenol F, bisphenol A diglycidyl ether and bisphenol F diglycidyl ether migrated from food cans using gas chromatography-mass spectrometry, Czech J. Food Sci., 21, 85-90 (2003). https://doi.org/10.17221/3481-CJFS
  18. J. L. Vilchez, A. Zafra, A. Gonzalez-Casado, E. Hontoria, and M. del Olmo, Determination of trace amounts of bisphenol F, bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass spectrometry, Anal. Chim. Acta, 431, 31-40 (2001). https://doi.org/10.1016/S0003-2670(00)01315-5
  19. G. Li, L. Zhao, P. Yang, Z. Yang, Z. Tian, Y. Chen, H. Shen, and C. Hu, Engineering 1,3-alternate calixcarbazole for recognition and sensing of bisphenol F in water, Anal. Chem., 88, 10751-10756 (2016). https://doi.org/10.1021/acs.analchem.6b03398
  20. C. Liu, Z. C. Sun, W. Y. Pei, J. Yang, H. L. Xu, J. P. Zhang, and J. F. Ma, A porous metal-organic framework as an electrochemical sensing platform for highly selective adsorption and detection of bisphenols, Inorg. Chem., 60, 12049-12058 (2021). https://doi.org/10.1021/acs.inorgchem.1c01253
  21. N. Ku, A. Byeon, and H. J. Lee, Electrochemical determination of bisphenol A concentrations using nanocomposites featuring multi-walled carbon nanotube, polyelectrolyte and tyrosinase, Appl. Chem. Eng., 32, 684-689 (2021).
  22. Y. Si, J. Li, S. H. Jhung and H. J. Lee, Recent research trends in voltammetric sensing platforms for hormones and their applications to human serum analyses, Anal. Sci., 38, 11-21 (2022). https://doi.org/10.2116/analsci.21SAR01
  23. N. B. Messaoud, M. E. Ghica, C. Dridi, M. B. Ali, and C. M. A. Brett, Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A, Sens. Actuators B Chem., 253, 513-522 (2017). https://doi.org/10.1016/j.snb.2017.06.160
  24. J. Huang, X. Zhang, S. Liu, Q. Lin, X. He, X. Xing, and W. Lian, Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles, J. Appl. Electrochem., 41, 1323-1328 (2011). https://doi.org/10.1007/s10800-011-0350-8
  25. R. F. de Souza, J. C. Padilha, R. S. Goncalves, and J. Dupont, Room temperature dialkylimidazolium ionic liquid-based fuel cells, Electrochem. Commun., 5, 728-731 (2003). https://doi.org/10.1016/S1388-2481(03)00173-5
  26. B. Wang, L. Qin, T. Mu, Z. Xue, and G. Gao, Are ionic liquids chemically stable?, Chem. Rev., 117, 7113-7131 (2017). https://doi.org/10.1021/acs.chemrev.6b00594
  27. H. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: The state of arts, Appl. Chem. Eng., 21, 129-136 (2010).
  28. S. Guney and O. Guney, Development of an electrochemical sensor based on covalent molecular imprinting for selective determination of bisphenol-A, Electroanalysis, 29, 2579-2590 (2017). https://doi.org/10.1002/elan.201700300
  29. R. Cai, W. Rao, Z. Zhang, F. Long and Y. Yin, An imprinted electrochemical sensor for bisphenol A determination based on electrodeposition of a graphene and Ag nanoparticle modified carbon electrode, Anal. Methods, 6, 1590-1597 (2014). https://doi.org/10.1039/C3AY42125B
  30. M. Salman and H. J. Lee, Synthesis and electrolyte characterization of 1-Benzyl-3-butylimidazolium hydroxide ionic liquid, Appl. Chem. Eng., 31, 603-606 (2020).
  31. J. Yang, X. Wang, D. Zhang, L. Wang, Q. Li, and L. Zhang, Simultaneous determination of endocrine disrupting compounds bisphenol F and bisphenol AF using carboxyl functionalized multi-walled carbon nanotubes modified electrode, Talanta, 130, 207-212 (2014). https://doi.org/10.1016/j.talanta.2014.06.056
  32. O. N. Oliveira, F. Marystela, F. L. Leite and A. L. D. Roz, Electrochemical sensors. In: F. R. Simoes and M. G. Xavier (eds.). Nanoscience and its Applications, 1st ed., 155-176, Elsevier, Amsterdam, Netherlands (2016).
  33. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals Of Analytical Chemistry, 9th ed., 172-187, Cengage learning, Belmont, USA (2013).
  34. C. Macca and W. Joseph, Experimental procedures for the determination of amperometric selectivity coefficients, Anal. Chim. Acta, 303, 265-274 (1995). https://doi.org/10.1016/0003-2670(94)00511-J