DOI QR코드

DOI QR Code

Structural and Electrical Properties of (La0.7-xCex)Sr0.3MnO3 Ceramics

(La0.7-xCex)Sr0.3MnO3 세라믹스의 구조적, 전기적 특성

  • Tae-Yeon In (Major in Ceramic Engineering, School of Materials Science and Engineering, Gyeongsang National University) ;
  • Jeong-Eun Lim (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Byeong-Jun Park (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sam-Haeng Yi (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Myung-Gyu Lee (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Joo-Seok Park (Business Support Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Sung-Gap Lee (Major in Ceramic Engineering, School of Materials Science and Engineering, Gyeongsang National University)
  • 인태연 (경상국립대학교 나노신소재공학부 세라믹공학전공) ;
  • 임정은 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박병준 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이삼행 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이명규 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박주석 (한국세라믹기술원 기업지원본부) ;
  • 이성갑 (경상국립대학교 나노신소재공학부 세라믹공학전공)
  • Received : 2023.01.05
  • Accepted : 2023.01.27
  • Published : 2023.05.01

Abstract

La0.7-xCexSr0.3MnO3 specimens were fabricated by a solid state reaction method and structural and electrical properties with variation of Ce4+ contents were measured. All specimens exhibited a polycrystalline rhombohedral crystal structure, and the (110) peaks were shifted to low angle side with increasing the amount of Ce4+ contents. As Ce4+ ions with different ion radii and charges are substituted with La3+ ions, electrical properties are thought to be affected by changes in the double exchange interaction between Mn3+-Mn4+ ions due to distortion of the unit lattice, a decrease in oxygen vacancy concentration, and an increase in lattice defects. Resistivity gradually decrease as the amount of Ce4+ added increased, and negative temperature coefficient of resistance (NTCR) properties were shown in all specimens. In the La0.5Ce0.2Sr0.3MnO3 specimens, electrical resistivity, TCR and B-value were 31.8 Ω-cm, 0.55%/℃ and 605 K, respectively.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1I1A3052426), and the Technology Innovation Program (20020478, Development of commercial reference materials for chemical composition of nano-grade aluminum oxide for rechargeable battery separator coating) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. Q. Song, G. Wang, G. Yan, Q. Mao, W. Wang, and Z. Peng, J. Rare Earths, 26, 821 (2008). [DOI: https://doi.org/10.1016/S1002-0721(09)60014-4]
  2. M. C. Kao, H. Z. Chen, S. L. Young, C. Y. Shen, and L. Horng, J. Alloys Compd., 440, 18 (2007). [DOI: https://doi.org/10.1016/j.jallcom.2006.09.030]
  3. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994). [DOI: https://doi.org/10.1126/science.264.5157.413]
  4. D. Varshney, I. Mansuri, N. Kaurav, W. Q. Lung, and Y. K. Kuo, J. Magn. Magn. Mater., 324, 3276 (2012). [DOI: https://doi.org/10.1016/j.jmmm.2012.05.028]
  5. H. Zhang, T. Liu, L. Zhao, H. Jiang, and A. Chang, J. Mater. Sci.: Mater. Electron., 28, 14195 (2017). [DOI: https://doi.org/10.1007/s10854-017-7276-9]
  6. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett., 71, 2331 (1993). [DOI: https://doi.org/10.1103/PhysRevLett.71.2331]
  7. W. Huang, Y. Lin, Y. Yin, L. Feng, D. Zhang, W. Zhao, Q. Li, and X. Li, ACS Appl. Mater. Interfaces, 8, 10422 (2016). [DOI: https://pubs.acs.org/doi/abs/10.1021/acsami.6b02150]
  8. S. Kumari, N. Mottaghi, C. Y. Huang, R. Trappen, G. Bhandari, S. Yousefi, G. Cabrera, M. S. Seehra, and M. B. Holcomb, Sci. Rep., 10, 3659 (2020). [DOI: https://doi.org/10.1038/s41598-020-60343-5]
  9. A. Elghoul, A. Krichene, N. C. Boudjada, and W. Boujelben, Ceram. Int., 44, 12723 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2018.04.075]
  10. L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett., 79, 1710 (1997). [DOI: https://doi.org/10.1103/PhysRevLett.79.1710]
  11. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 58, 2426 (1998). [DOI: https://doi.org/10.1103/PhysRevB.58.2426]
  12. D. Shi, S. Chen, D. Liu, L. Xu, H. Xiao, and C. Yang, Curr. Appl. Phys., 15, 864 (2015). [DOI: https://doi.org/10.1016/j.cap.2015.03.024]
  13. E. D. Macklen, Thermistors (Electrochemical Publications Ltd., Scotland, 1979) p. 33.
  14. R. Schmidt, A. Basu, A. W. Brinkman, Z. Klusek, and P. K. Datta, Appl. Phys. Lett., 86, 073501 (2005). [DOI: https://doi.org/10.1063/1.1866643]
  15. A. Elghoul, A. Krichene, and W. Boujelben, J. Phys. Chem. Solids, 98, 263 (2016). [DOI: https://doi.org/10.1016/j.jpcs.2016.07.021]