DOI QR코드

DOI QR Code

Textured Ceramics for Multilayered Actuator Applications: Challenges, Trends, and Perspectives

  • Temesgen Tadeyos Zate (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Nu-Ri Ko (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Hye-Lim Yu (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Woo-Jin Choi (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeong-Woo Sun (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jae-Ho Jeon (Department of Functional Powder Materials, Korea Institute of Materials Science) ;
  • Wook Jo (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2023.03.14
  • Accepted : 2023.03.22
  • Published : 2023.05.01

Abstract

Piezoelectric actuators, which utilize piezoelectric crystals or ceramics, are commonly used in precision positioning applications, offering high-speed response and precise control. However, the use of low-performance ceramics and expensive single crystals is limiting their versatile use in the actuator market, necessitating the development of both high-performance and cost-effective piezoelectric materials capable of delivering higher forces and displacements. The use of textured Pb (lead)-based piezoelectric ceramics formed by so-called templated grain growth method has been identified as a promising strategy to address the performance and cost issue. This review article provides insights into recent advances in texturing Pb-based piezoelectric ceramics for improved performance in actuation applications. We discussed the relevant issues in detail focusing on current challenges and emerging trends in the textured piezoelectric ceramics for their reliability and performance in actuator applications. We discussed in detail focusing on current challenges and emerging trends of textured piezoelectric ceramics for their reliability and performance in actuator applications. In conclusion, the article provides an outlook on the future direction of textured piezoelectric ceramics in actuator applications, highlighting the potential for further success in this field.

Keywords

Acknowledgement

This research was supported by the Leading Foreign Research Institute Recruitment Program (No.2017K1A4A3015437) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT and UST Young Scientist Research Program 2021 (2021YS28) through the University of Science and Technology of the Republic of Korea.

References

  1. K. Uchino, Adv. Piezoelectr. Mater., Woodhead Pub. (2017). [DOI: https://doi.org/10.1016/B978-0-08-102135-4.09985-9]
  2. M. S. Vijaya, CRC Press (2012).
  3. M. S. Lee, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 601 (2016). [DOI: https://doi.org/10.4313/jkem.2016.29.10.601]
  4. M. H. Park, J. M. Park, and C. H. Song, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 276 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.4.276]
  5. N. Setter, Ceramics Laboratory, EPFL SFIT (2002).
  6. K. Uchino, Sci. Technol. Adv. Mater., 16, 046001 (2015). [DOI: https://doi.org/10.1088/1468-6996/16/4/046001]
  7. K. Uchino, J. Electroceram., 20, 301 (2008). [DOI: https://doi.org/10.1007/s10832-007-9196-1]
  8. S. Mohith, A. R. Upadhya, K. P. Navin, S. M. Kulkarni, and M. Rao, Smart Mater. Struct., 30, 013002 (2020). [DOI: https://doi.org/10.1088/1361-665X/abc6b9]
  9. K. Uchino and S. Takahashi, Curr. Opin. Solid State Mater. Sci., 1, 698 (1996). [DOI: https://doi.org/10.1016/S1359-0286(96)80054-4]
  10. L. Gao, H. Guo, S. Zhang, and C. A. Randall, Actuators, 5, 8 (2016). [DOI: https://doi.org/10.3390/act5010008]
  11. J. E. Huber, N. A. Fleck, and M. F. Ashby, Proc. R. Soc. A, 453, 2185 (1997). [DOI: https://doi.org/10.1098/rspa.1997.0117]
  12. K. Kurihara and M. Kondo, Ceram. Int., 34, 695 (2008). [DOI: https://doi.org/10.1016/j.ceramint.2007.09.073]
  13. J. Hao, W. Li, J. Zhai, and H. Chen, Mater. Sci. Eng., 135, 1 (2019). [DOI: https://doi.org/10.1016/j.mser.2018.08.001]
  14. J. Chen, G. Liu, X. Li, Z. Chen, and S. Dong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60, 446 (2013). [DOI: https://doi.org/10.1109/TUFFC.2013.2588]
  15. P. Fan, K. Liu, W. Ma, H. Tan, Q. Zhang, L. Zhang, C. Zhou, D. Salamon, S. T. Zhang, and Y. Zhang, J. Materiomics, 7, 508 (2021). [DOI: https://doi.org/10.1016/j.jmat.2020.11.009]
  16. M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, Int. J. Mol. Sci., 12, 3648 (2011). [DOI: https://doi.org/10.3390/ijms120 63648]
  17. K. Uchino, MRS Bull., 18, 42 (1993). [DOI: https://doi.org/10.1557/S0883769400037349]
  18. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, and S. Dong, Adv. Mater. Technol., 5, 1900716 (2020). [DOI: https://doi.org/10.1002/admt.201900716]
  19. K. Uchino, DEStech Publ
  20. K. Uchino, Phase Transitions, 88, 342 (2015). [DOI: https://doi.org/10.1080/01411594.2014.989229]
  21. S. E. Park and T. R. Shrout, Mater. Res. Innovations, 1, 20 (1997). [DOI: https://doi.org/10.1007/s100190050014]
  22. F. Tajdari, A. P. Berkhoff, M. Naves, M. Nijenhuis, and A. de Boer, Sens. Sens. Actuators, A, 313, 112198 (2020). [DOI: https://doi.org/10.1016/j.sna.2020.112198]
  23. P. Dineva, D. Gross, R. Muller, and T. Rangelov, Dynamic Fracture of Piezoelectric Materials - Piezoelectric Materials (2014) p. 7. [DOI: https://doi.org/10.1007/978-3-319-03961-9_2]
  24. S.E.E. Park and W. Hackenberger, Curr. Opin. Solid State Mater. Sci., 6, 11 (2002). [DOI: https://doi.org/10.1016/S1359-0286(02)00023-2]
  25. G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehring, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, Crit. Rev. Solid State Mater. Sci., 29, 45 (2004). [DOI: https://doi.org/10.1080/10408430490490905]
  26. T. Kimura, Y. Sakuma, and M. Murata, J. Eur. Ceram. Soc., 25, 2227 (2005). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.036]
  27. G. L. Messing, E. M. Sabolsky, S. Kwon, and S. Trolier-McKinstry, Key Eng. Mater., 206, 1293 (2001). [DOI: https://doi.org/10.4028/www.scientific.net/kem.206-213.1293]
  28. J. Li, W. Qu, J. Daniels, H. Wu, L. Liu, J. Wu, M. Wang, S. Checchia, S. Yang, H. Lei, R. Lv, Y. Zhang, D. Wang, X. Li, X. Ding, J. Sun, Z. Xu, Y. Chang, S. Zhang, and F. Li, Science, 380, 87 (2023). [DOI: https://doi.org/10.1126/science.adf6161]
  29. W. S. Kang, T. G. Lee, J. H. Kang, J. H. Lee, G. Choi, S. W. Kim, S. Nahm, and W. Jo, J. Eur. Ceram. Soc., 41, 2482 (2021). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.12.028]
  30. E. J. Kim, S. W. Kim, D. S. Kim, S. H. Go, S. J. Chae, J. M. Eum, H. M. Yu, Y. G. Chae, and S. Nahm, J. Eur. Ceram. Soc., 43, 1912 (2023). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.11.072]
  31. H. L. Yu, N. R. Ko, W. J. Choi, T. T. Zate, and W. Jo, J. Sens. Sci. Technol., 32, 10 (2023). [DOI: https://doi.org/10.46670/jsst.2023.32.1.10]
  32. T. Richter, S. Denneler, C. Schuh, E. Suvaci, and R. Moos, J. Am. Ceram. Soc., 91, 929 (2008). [DOI: https://doi.org/10.1111/j.1551-2916.2007.02216.x]
  33. Y. Chang, J. Wu, Z. Liu, E. Sun, L. Liu, Q. Kou, F. Li, B. Yang, and W. Cao, ACS Appl. Mater. Interfaces, 12, 38415 (2020). [DOI: https://doi.org/10.1021/acsami.0c11680]
  34. Y. Chang, B. Watson, M. Fanton, R. J. Meyer Jr, and G. L. Messing, Appl. Phys. Lett., 111, 232901 (2017). [DOI: https://doi.org/10.1063/1.5006288]
  35. D. Wei and H. Wang, J. Am. Ceram. Soc., 100, 1073 (2017). [DOI: https://doi.org/10.1111/jace.14657]
  36. Y. Yan, A. Marin, Y. Zhou, and S. Priya, Energy Harvesting Syst., 1, 189 (2014). [DOI: https://doi.org/10.1515/ehs-2014-0001]
  37. J. H. Yoo, K. S. Lee, and I. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 524 (2008). [DOI: https://doi.org/10.4313/JKEM.2008.21.6.524]
  38. M. Han-Young, K. Seong-Soo, S. Hwa-Cheol, and K. Suck-Hwa, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 3 (1997).
  39. E. K. Lim, C. I. Kim, Y. J. Lee, J. I. Im, and J. H. Paik, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 935 (2006). [DOI: https://doi.org/10.4313/JKEM.2006.19.10.935]
  40. Y. H. Kim, H. Ryu, Y. K. Cho, H. J. Lee, and S. Nahm, J. Am. Ceram. Soc., 96, 312 (2013). [DOI: https://doi.org/10.1111/j.1551-2916.2012.05461.x]
  41. E. J. Kim, T. G. Lee, D. S. Kim, S. W. Kim, Y. J. Yee, S. H. Han, H. W. Kang, and S. Nahm, Appl. Mater., 20, 100695 (2020). [DOI: https://doi.org/10.1016/j.apmt.2020.100695]
  42. C. A. Goat and R. W. Whatmore, J. Eur. Ceram. Soc., 19, 1311 (1999). [DOI: https://doi.org/10.1016/S0955-2219(98)00426-9]
  43. H. Wang and R. N. Singh, J. Appl. Phys., 81, 7471 (1997). [DOI: https://doi.org/10.1063/1.365290]
  44. W. Chang, A. H. King, and K. J. Bowman, J. Mater. Res., 22, 2845 (2007). [DOI: https://doi.org/10.1557/JMR.2007.0355]
  45. G. P. Khanal, S. Kim, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, and S. Wada, J. Appl. Phys., 124, 034102 (2018). [DOI: https://doi.org/10.1063/1.5023814]
  46. T. T. Zate, M. Kim, and J. H. Jeon, Sens. Actuators, A, 335, 113373 (2022). [DOI: https://doi.org/10.1016/j.sna.2022.113373]
  47. P. W. Stephens, J. Appl. Cryst., 32, 281 (1999). [DOI: https://doi.org/10.1107/S0021889898006001]
  48. M. Shandilya and G. A. Kaur, J. Solid State Chem., 280, 120988 (2019). [DOI: https://doi.org/10.1016/j.jssc.2019.120988]
  49. D. A. Hall, J. Mater. Sci., 36, 4575 (2001). [DOI: https://doi.org/10.1023/A:1017959111402]
  50. D. Damjanovic, The Science of Hysteresis (2006) p. 337. [DOI: https://doi.org/10.1016/b978-012480874-4/50022-1]
  51. E. R. Muir, L. Liu, P. P. Friedmann, and D. Kumar, J. Guid. Control Dyn., 35, 1299 (2012). [DOI: https://doi.org/10.2514/1.53911]
  52. J. Shan, Y. Liu, U. Gabbert, and N. Cui, Smart Mater. Struct., 25, 025024 (2016). [DOI: https://doi.org/10.1088/0964-1726/25/2/025024]
  53. Q. Xu and Y. Li, J. Dyn. Syst. Meas., Control, 132, 041011 (2010). [DOI: https://doi.org/10.1115/1.4001712]
  54. M. A. Janaideh, M. A. Saaideh, and M. Rakotondrabe, Mech. Syst. Signal Process., 145, 106880 (2020). [DOI: https://doi.org/10.1016/j.ymssp.2020.106880]
  55. X. Chen, C. Y. Su, Z. Li, and F. Yang, IEEE Trans. Ind. Electron., 63, 6471 (2016). [DOI: https://doi.org/10.1109/TIE.2016.2573270]
  56. W. Bai, L. Li, W. Li, B. Shen, J. Zhai, and H. Chen, J. Alloys Compd., 603, 149 (2014). [DOI: https://doi.org/10.1016/j.jallcom.2014.03.033]
  57. A. D. Moriana and S. J. Zhang, J. Eur. Ceram. Soc., 42, 2752 (2022). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.01.062]
  58. K. K. Leang and S. Devasia, IEEE Trans. Control Syst. Technol., 15, 927 (2007). [DOI: https://doi.org/10.1109/TCST.2007.902956]
  59. W. Yang, P. Li, S. Wu, F. Li, B. Shen, and J. Zhai, Adv. Electron. Mater., 5, 1900570 (2019). [DOI: https://doi.org/10.1002/aelm.201900570]
  60. S. Yang, M. Wang, L. Wang, J. Liu, J. Wu, J. Li, X. Gao, Y. Chang, Z. Xu, and F. Li, J. Am. Ceram. Soc., 105, 3322 (2022). [DOI: https://doi.org/10.1111/jace.18293]
  61. Y. Yan, Y. U. Wang, and S. Priya, Appl. Phys. Lett., 100, 192905 (2012). [DOI: https://doi.org/10.1063/1.4712563]
  62. S. Yang, J. Li, Y. Liu, M. Wang, L. Qiao, X. Gao, Y. Chang, H. Du, Z. Xu, S. Zhang, and F. Li, Nat. Commun., 12, 1414 (2021). [DOI: https://doi.org/10.1038/s41467-021-21673-8]
  63. Y. Yan, K. H. Cho, and S. Priya, Appl. Phys. Lett., 100, 132908 (2012). [DOI: https://doi.org/10.1063/1.3698157]
  64. Y. Yan, L. Yang, Y. Zhou, K. H. Cho, J. S. Heo, and S. Priya, J. Appl. Phys., 118, 104101 (2015). [DOI: https://doi.org/10.1063/1.4929958]
  65. L. Liu, B. Yang, S. Yang, Q. Kou, H. Xie, Y. Sun, Y. Chang, S. T. Zhang, and F. Li, J. Eur. Ceram. Soc., 42, 2743 (2022). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.02.018]
  66. K. Zheng, Y. Quan, J. Zhuang, J. Zhao, W. Ren, L. Wang, Z. Wang, G. Niu, C. Fei, Z. Jiang, and L. Wen, J. Eur. Ceram. Soc., 41, 2458 (2021). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.11.027]
  67. Z. Chen, H. Shi, L. Cui, and W. Cao, J. Mater. Sci., 56, 9655 (2021). [DOI: https://doi.org/10.1007/s10853-021-05912-3]
  68. Y. Yan, K. H. Cho, and S. Priya, J. Am. Ceram. Soc., 94, 1784 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2010.04298.x]
  69. S. Kwon, E. M. Sabolsky, G. L. Messing, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 88, 312 (2005). [DOI: https://doi.org/10.1111/j.1551-2916.2005.00057.x]
  70. D. E. Dausch and M. W. Hooker, J. Intell. Mater. Syst. Struct., 8, 1044 (1997). [DOI: https://doi.org/10.1177/1045389X97008012]
  71. S. Hooker, J. Mueller, C. Kostelecky, and K. Womer, J. Intell. Mater. Syst. Struct., 18, 153 (2007). [DOI: https://doi.org/10.1177/1045389X06063460]
  72. Y. Quan, W. Ren, G. Niu, L. Wang, J. Zhao, N. Zhang, M. Liu, Z. G. Ye, L. Liu, and T. Karaki, ACS Appl. Mater. Interfaces, 10, 10220 (2018). [DOI: https://doi.org/10.1021/acsami.8b01554]
  73. L. Liu, B. Yang, R. Lv, Q. Kou, S. Yang, H. Xie, Y. Sun, Y. Chang, S. T. Zhang, and F. Li, J. Mater. Sci. Technol., 145, 40 (2023). [DOI: https://doi.org/10.1016/j.jmst.2022.10.030]
  74. Y. Li, Z. Chen, and G. Duan, Acta Mater., 235, 118065 (2022). [DOI: https://doi.org/10.1016/j.actamat.2022.118065]
  75. J. Chen and J. Cheng, J. Am. Ceram. Soc., 99, 536 (2016). [DOI: https://doi.org/10.1111/jace.14003]