DOI QR코드

DOI QR Code

Health diagnosis of permanent magnets under different cooling system effectiveness in high-speed permanent magnet motors for electric vehicles

  • Meiwei Zhang (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Weili Li (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Wanlu Xie (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Haoyue Tang (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Zhigang Wu (School of Electrical Engineering, Beijing Jiaotong University)
  • Received : 2022.02.26
  • Accepted : 2022.10.13
  • Published : 2023.03.20

Abstract

The power density of a high-speed permanent magnet (PM) motor is high, and the heat dissipation of its rotor is poor due to limited installation space. Th0000000000000000000us, the temperature of the permanent magnets is high. Once the cooling system of a motor becomes ineffective and the rotor temperature exceeds the limit temperature of the PM material, a demagnetization fault of the PM occur, which seriously affects the performance of the PM motor. To ensure the safe and reliable operation of PM motors, a method to diagnose the PM health is presented in this paper. The demagnetization ratio of the PM can be diagnosed quantitatively by its temperature. In this paper, the relationship between the temperature and the demagnetization ratio of a PM is obtained through thermal demagnetization tests, and the threshold temperature of demagnetization is given. Then, the health of a PM under different effectiveness of the cooling system in a high-speed PM motor is researched. Finally, the calculation results are verified by temperature tests of a high-speed PM motor.

Keywords

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities 2019JBZ101 and the High power and high efficiency electric drive assembly system development and industrialization project TC210H02Q in China.

References

  1. Sarikprueck, P., Lumyong, P., Nirojana, CN., et al.: "Magnetization of NdFeB permanent magnet considering demagnetization effect," 21st international conference on electrical machines and systems, pp 649-652 (2018) 
  2. Bochenkov, B., Lutz, S., "A review of modern materials of permanent magnets," 8th Russian-Korean international symposium on science and technology, vol. 1, pp. 201-203 (2004) 
  3. Adil Usman and Bharat Singh Rajpurohit: Modeling and Classification of stator inter-turn fault and demagnetization effects in BLDC motor using rotor back-EMF and radial magnetic flux analysis. IEEE Access 8, 118030-118049 (2020)  https://doi.org/10.1109/ACCESS.2020.3005038
  4. Kim, B.-C., Lee, J.-H., Kang, D.-W.: A Study on the effect of eddy current loss and demagnetization characteristics of magnet division. IEEE Transact. Appl. Supercond. 30(4), 0600805 (2020) 
  5. Wang, W., Zheng, P., Wang, M., et al.: Demagnetization and permanent-magnet minimization analyses of less-rare-earth interior permanent-magnet synchronous machines used for electric vehicles. IEEE Transact. Magnet. 54(11), 8109505 (2018) 
  6. Lee, B.-H., Jung, J.-W., Hong, J.-P.: An improved analysis method of irreversible demagnetization for a single-phase line-start permanent magnet motor. IEEE Transact. Magnet. 54(11), 8206905 (2018) 
  7. Jeong, G., Kim, H., Lee, J.: A study on the design of ipmsm for reliability of demagnetization characteristics-based rotor. IEEE Transact. Appl. Supercond. 30(4), 5204805 (2020) 
  8. Guo, B., Huang, Y., Peng, F., et al.: General analytical modeling for magnet demagnetization in surface mounted permanent magnet machines. IEEE Trans. Industr. Electron. 66(8), 5830-5838 (2019)  https://doi.org/10.1109/TIE.2018.2873099
  9. Song, J., Zhao, J., Dong, F., et al.: demagnetization fault detection for double-sided permanent magnet linear motor based on three-line magnetic signal signature analysis. IEEE Transact. Mechatron. 25(2), 815-827 (2020)  https://doi.org/10.1109/TMECH.2019.2961175
  10. Gherabi, Z., Toumi, D., Benouzza, N., et al.: discrimination between demagnetization and eccentricity faults in PMSMs using real and imaginary components of stator current spectral analysis. J. Power Electron. 21, 153-163 (2021)  https://doi.org/10.1007/s43236-020-00169-6
  11. Zhang, C., Gongping, Wu., Rong, F., et al.: "Robust Fault-tolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault." IEEE Trans. Industr. Electron. 65(7), 5324-5334 (2018)  https://doi.org/10.1109/TIE.2017.2774758
  12. Li, W., Feng, G., Lai, C., et al.: "Demagnetization analysis of interior permanent magnet machines under integrated charging operation." IEEE Trans. Ind. Appl. 55(5), 5204-5213 (2019)  https://doi.org/10.1109/TIA.2019.2922209
  13. Zhu, M., Wensong, Hu., Kar, N.C.: Acoustic noise-based uniform permanent-magnet demagnetization detection in SPMSM for high-performance PMSM drive. IEEE Transact. Transport. Electr. 4(1), 303-313 (2018)  https://doi.org/10.1109/TTE.2017.2755549
  14. Song, J., Zhao, J., Zhang, X., et al.: accurate demagnetization faults detection of dual-sided permanent magnet linear motor using enveloping and time-domain energy analysis. IEEE Trans. Industr. Inf. 16(10), 6334-6346 (2020)  https://doi.org/10.1109/TII.2019.2962730
  15. Mehmet Recep Minaz and Eyyup Akcan: An effective method for detection of demagnetization fault in axial flux coreless PMSG with texture-based analysis. IEEE Access 9, 17438- 17449 (2021)  https://doi.org/10.1109/ACCESS.2021.3050418
  16. Krichen, M., Elbouchikhi, E., Benhadj, N., et al.: Motor current signature analysis-based permanent magnet synchronous motor demagnetization characterization and detection. Machines 8(35), 1-29 (2020)  https://doi.org/10.3390/machines8030035
  17. Song, X., Zhao, J., Song, J., et al.: "Local demagnetization fault recognition of permanent magnet synchronous linear motor based on s-transform and PSO-LSSVM." IEEE Trans. Power Electron. 35(8), 7816-7825 (2020) 
  18. Shi, Y., Wang, J.: Continuous demagnetization assessment for triple redundant nine-phase fault-tolerant permanent magnet machine. IET The J. Eng. 2019(17), 4359-4363 (2019) 
  19. Nishiyama, N., Uemura, H., Honda, Y.: Highly demagnetization performance IPMSM under hot environments. IEEE Trans. Ind. Appl. 55(1), 265-272 (2019)  https://doi.org/10.1109/TIA.2018.2863666
  20. Omar Farrok, M.D., Rabiul Islam, M.D., Sheikh, R.I., et al.: Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Transact. Ind. Appl. 54(6), 6005-6014 (2018)  https://doi.org/10.1109/TIA.2018.2863661
  21. You, Y.-M., Yoon, K.-Y.: Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization. Appl. Sci. 11(5), 1-12 (2021) 
  22. Mo, L., Gangxu, Z., Zhang, T., et al.: Multilevel optimization design for a flux-concentrating permanent-magnet brushless machine considering pm demagnetization limitation. IEEE Transact. Magn. 57(2), 8101105 (2021) 
  23. Zhang, Y., Xiang, Z., Zhu, X., et al.: Anti-demagnetization capability research of a less-rare-earth permanent-magnet synchronous motor based on the modulation principle. IEEE Transact. Magnet. 57(2), 8200706 (2021) 
  24. Roberto Eduardo Quintal Palomo and Maciej Gwozdziewicz: Effect of demagnetization on a consequent pole IPM synchronous generator. Energies 13(23), 6371 (2020) 
  25. Verkroost, L., De Bisschop, J., Vansompel, H., et al.: Active demagnetization fault compensation for axial flux permanentmagnet synchronous machines using an analytical inverse model. IEEE Trans. Energy Convers. 35(2), 591-599 (2020)  https://doi.org/10.1109/TEC.2019.2958071
  26. Kim, D.-W., Kang, D.H., Kim, C.-H., et al.: Operation characteristic of IPMSM considering PM saturation temperature. IEEE Transact. Appl. Supercond. 30(4), 5207204 (2020) 
  27. Li, W., Li, D., Li, J., et al.: Influence of rotor radial ventilation ducts number on temperature distribution of rotor excitation winding and fluid flow state between two poles of a fully air-cooled hydro-generator. IEEE Trans. Industr. Electron. 64(5), 3767-3775 (2017)  https://doi.org/10.1109/TIE.2017.2650871
  28. Li, W., Cao, J., Zhang, X.: Electrothermal analysis of induction motor with compound cage rotor used for PHEV. IEEE Trans. Industr. Electron. 57(2), 660-668 (2010) https://doi.org/10.1109/TIE.2009.2033088