DOI QR코드

DOI QR Code

Six-phase drive-based integrated onboard battery charger for electric vehicles considering zero-sequence circulating current elimination

  • Ting Ji (School of Electrical Engineering, Nantong University) ;
  • Feng Yu (School of Electrical Engineering, Nantong University) ;
  • Qihao Yin (School of Electrical Engineering, Nantong University) ;
  • Xing Liu (School of Electrical Engineering, Southeast University)
  • Received : 2022.01.13
  • Accepted : 2022.10.13
  • Published : 2023.03.20

Abstract

The concept of the integrated onboard battery charger (IOBC) provides electric vehicles (EVs) with access to the integration of the drivetrain and the charger. In this paper, an IOBC based on a six-phase drive is studied. In the charging mode, the IOBC is equivalent to a paralleled three-phase voltage source rectifier (PTP-VSR) with common ac and dc sides. Such operation leads to a zero-sequence circulating current (ZSCC), which causes current waveform distortion and the resultant power loss. This paper proposes a novel ZSCC elimination strategy, which is in principle tied to fnite control set model predictive control (FCS-MPC). By modifying the control set (CS), the ZSCC can be naturally circumvented without increasing the complexity of the control system. Furthermore, an enhanced phase-locked loop (EPLL) based on the second-order generalized integrator (SOGI) is proposed, by which, only sampling a line voltage is required. Finally, the effectiveness of the proposed strategy and EPLL are experimentally validated.

Keywords

Acknowledgement

The work was supported in part by the National Natural Science Foundation of China (52177051), and in part by the Basic Science Research Project of Nantong City (JC2021106).

References

  1. Global EV Outlook. 2019. Int Energy Agency
  2. Liu, C., Chau, K.T., Wu, D.: Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Proc. IEEE 101(11), 2409-2427 (2013) https://doi.org/10.1109/JPROC.2013.2271951
  3. Chau, K.T., Chan, C.C., Liu, C.: Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2246-2257 (2008) https://doi.org/10.1109/TIE.2008.918403
  4. Subotic, I., Bodo, N., Levi, E.: Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics. IET Electric Power Appl. 10(3), 217-229 (2016) https://doi.org/10.1049/iet-epa.2015.0292
  5. Levi, E.: Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Trans. Ind. Electron. 63(1), 433-448 (2016) https://doi.org/10.1109/TIE.2015.2434999
  6. Xing, L., Feng, Y., Mao, J., Hui, Y.: Pre- and post-fault operations of six-phase electric-drive-reconstructed onboard charger for electric vehicles. Trans. Transport. Electrifc. 8(2), 1981-1993 (2022) https://doi.org/10.1109/TTE.2021.3113316
  7. Khaligh, A., D'Antonio, M.: Global trends in high-power on-board chargers for electric vehicles. IEEE Trans. Veh. Technol. 68(4), 3306-3324 (2019) https://doi.org/10.1109/TVT.2019.2897050
  8. Subotic, I., Bodo, N., Levi, E.: Integration of six-phase EV drivetrains into battery charging process with direct grid connection. IEEE Trans. Energy Convers. 32(3), 1012-1022 (2017) https://doi.org/10.1109/TEC.2017.2679280
  9. Ali, S., Mascarella, D., Joos, G.: Torque cancelation of integrated battery charger based on six-phase permanent magnet synchronous motor drives for electric vehicles. IEEE Trans. Transport. Electrifc. 4(2), 344-354 (2018) https://doi.org/10.1109/TTE.2017.2788190
  10. Xiao, Y., Liu, C., Yu, F.: An efective charging-torque elimination method for six-phase integrated on-board EV chargers. IEEE Trans. Power Electron. 35(3), 2776-2786 (2020) https://doi.org/10.1109/TPEL.2019.2924538
  11. Subotic, I., Bodo, N., Levi, E.: Isolated chargers for EVs incorporating six-phase machines. IEEE Trans. Ind. Electron. 63(1), 653-664 (2016) https://doi.org/10.1109/TIE.2015.2412516
  12. Diab, M., Elserougi, A., Abdel-Khalik, A.: A nine-switch-converter-based integrated motor drive and battery charger system for EVs using symmetrical six-phase machines. IEEE Trans. Ind. Electron. 63(9), 5326-5335 (2016) https://doi.org/10.1109/TIE.2016.2555295
  13. Narimani, M., Moschopoulos, G.: Improved method for paralleling reduced switch VSI modules: harmonic content and circulating current. IEEE Trans. Power Electron. 29(7), 3308-3317 (2014) https://doi.org/10.1109/TPEL.2013.2280723
  14. Zhang, X., Chen, J., Ma, Y.: Bandwidth expansion method for circulating current control in parallel three-phase PWM converter connection system. IEEE Trans. Power Electron. 29(12), 6847- 6856 (2014) https://doi.org/10.1109/TPEL.2014.2311046
  15. Shukla, K., Malyala, V., Maheshwari, R.: A novel carrier-based hybrid PWM technique for minimization of line current ripple in two parallel interleaved two-level VSIs. IEEE Trans. Ind. Electron. 65(3), 1908-1918 (2018) https://doi.org/10.1109/TIE.2017.2745438
  16. Zhu, R., Liserre, M., Chen, Z.: Zero-sequence voltage modulation strategy for multiparallel converters circulating current suppression. IEEE Trans. Ind. Electron. 64(3), 1841-1852 (2017) https://doi.org/10.1109/TIE.2016.2623259
  17. Lei, Y., Du, G., Zhang, Y., et al.: Fixed switching frequency strategy for fnite-control-set model predictive control based on cost function reconstruction. J. Power Electron. 21, 853-864 (2021) https://doi.org/10.1007/s43236-021-00222-y
  18. Yu, F., Liu, X., Zhu, Z.: An improved fnite-control-set model predictive fux control for asymmetrical six-phase PMSMs with a novel duty-cycle regulation strategy. IEEE Trans. Energy Convers. 36(2), 1289-1299 (2021) https://doi.org/10.1109/TEC.2020.3031067
  19. Fan, S., Tong, C.: Model predictive current control method for PMSM drives based on an improved prediction model. J. Power Electron. 20, 1456-1466 (2020) https://doi.org/10.1007/s43236-020-00125-4
  20. Wang, F., Li, Z., Tong, X.: Modeling, analysis and evaluation of modifed model predictive control method for parallel threelevel simplifed neutral point clamped inverters. IEEE Access 7, 185349-185359 (2019) https://doi.org/10.1109/ACCESS.2019.2961054
  21. Xing, X., Zhang, C., He, J.: Model predictive control for parallel three-level T-type grid-connected inverters in renewable power generations. IET Renew. Power Gener. 11(11), 1353-1363 (2017) https://doi.org/10.1049/iet-rpg.2016.0361
  22. Wang, X., et al.: A novel model predictive control strategy to eliminate zero-sequence circulating current in paralleled threelevel inverters. IEEE. Trans. Emerg. Sel. Topics Power Electron. 7(1), 309-320 (2019) https://doi.org/10.1109/JESTPE.2018.2879645
  23. Wang, X., Zou, J., Peng, Y.: Elimination of zero sequence circulating currents in paralleled three-level T-type inverters with a model predictive control strategy. IET Power Electron. 11(15), 2573-2581 (2018) https://doi.org/10.1049/iet-pel.2018.5324
  24. Zhao, Y., Lipo, T.: Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Appl. 31(5), 1100-1109 (1995) https://doi.org/10.1109/28.464525
  25. Pellegrino, G., Armando, E., Guglielmi, P.: An integral battery charger with power factor correction for electric scooter. IEEE Trans. Power Electron. 25(3), 751-759 (2010) https://doi.org/10.1109/TPEL.2009.2033187
  26. Xiao, Y., Liu, C., Yu, F.: An integrated on-board EV charger with safe charging operation for three-phase IPM motor. IEEE Trans. Ind. Electron. 66(10), 7551-7560 (2019) https://doi.org/10.1109/TIE.2018.2880712
  27. Zhao, S., Yu, F., Liu, X.: Reference voltage vector based model predictive control for semicontrolled open-winding fux-switching permanent magnet generator system with a novel zero-sequence current suppression strategy. IET Renew Power Gener. 15, 477-490 (2021) https://doi.org/10.1049/rpg2.12049
  28. Pandey, A., Singh, A.: Design and analysis of Levenberg-Marquardt-based adaptive SOGI. IET Gener. Transm. Distrib. 14, 6569-6579 (2020) https://doi.org/10.1049/iet-gtd.2020.0246