DOI QR코드

DOI QR Code

Balancing control scheme of DC-link capacitor voltages for five-level hybrid T-type inverters without auxiliary circuit

  • Min‑Seok Kim (Department of Electrical Engineering, Yeungnam University) ;
  • Dong‑Choon Lee (Department of Electrical Engineering, Yeungnam University)
  • Received : 2022.09.29
  • Accepted : 2023.01.08
  • Published : 2023.03.20

Abstract

In this paper, a balancing control scheme of DC-link capacitor voltages for five-level hybrid T-type (5L-HT) inverters is proposed, where existing auxiliary balancing circuit is eliminated. The 5L-HT inverter has a significant advantage of the reduced number of devices compared with other five-level inverter topologies. However, this inverter requires an auxiliary balancing circuit, which is used to rectify the voltage imbalance at the DC-link capacitors, and thus negates the competitiveness of this topology in terms of device count and converter volume. To eliminate the auxiliary circuit, a carrier-overlapped PWM (COPWM) is applied in place of the conventional level-shifted PWM (LSPWM) to control the neutral-point currents, where the duty ratios of switches are adjusted by PI controllers. As a result, although the THD of the output voltage is rather increased, the cost and volume are saved by 27% and 52%, respectively, for a 1-MW/6.6-kV system. The effectiveness of the proposed balancing control method for the 5L-HT inverter has been verified through the simulation and experimental results for the prototype hardware.

Keywords

Acknowledgement

This research was supported by the Yeungnam University Research Grants in 2020.

References

  1. Koshti, A. K., Rao M. N.: A brief review on multilevel inverter topologies. In: Proc. IEEE international conference on data management, analytics and innovation, pp. 187-193 (2017) 
  2. Gupta, K.K., Ranjan, A., Bhatnagar, P., Sahu, L.K., Jain, S.: Multilevel inverter topologies with reduced device count: a review. IEEE Trans. Power Electron. 31(1), 135-151 (2016)  https://doi.org/10.1109/TPEL.2015.2405012
  3. El-Hosainy, A., Hamed, H. A., Azazi, H. Z., El-Kholy, E. E.: A review of multilevel inverter topologies, control techniques, and applications. In: Proc. IEEE International Middle East Power Systems Conference, pp. 1265-1275 (2017) 
  4. Omer, P., Kumar, J., Surjan, B.S.: A review on reduced switch count multilevel inverter topologies. IEEE Access 8, 22281-22302 (2020)  https://doi.org/10.1109/ACCESS.2020.2969551
  5. Soto, D., Green, T.C.: A comparison of high-power converter topologies for the implementation of FACTS controllers. IEEE Trans. Ind. Electron. O. 49(5), 1072-1080 (2002)  https://doi.org/10.1109/TIE.2002.803217
  6. Wu, B.: High-power converters and AC drives. Wiley, Hoboken (2007) 
  7. Rodriguez, J., Lai, J.-S., Peng, F.-Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724-728 (2002)  https://doi.org/10.1109/TIE.2002.801052
  8. Yuan, X., Barbi, I.: Fundamentals of a new diode clamping multilevel inverter. IEEE Trans. Power Electron. 15(4), 711-718 (2000)  https://doi.org/10.1109/63.849041
  9. Hakami, S.S., Lee, K.-B.: Proper flying capacitor selection for performance enhancement of five-level hybrid active neutral-point-clamped inverters. J. Power Electron. 22, 1687-1698
  10. Saberi, S., Rezaie, B.: Computationally efficient direct predictive speed control of PMSMs fed by three-level NPC convertors with guaranteed stability. J. Power Electron. 22, 1131-1141
  11. Anthon, A., Zhang, Z., Andersen, M.A.E., Holmes, D.G., McGrath, B., Teixeira, C.A.: The benefits of SiC MOSFETs in a T-Type inverter for grid-tie applications. IEEE Trans. Power Electron. 32(4), 2808-2821 (2017)  https://doi.org/10.1109/TPEL.2016.2582344
  12. Aliaga, R., Rojas, D., Munoz, J., et al.: 27-Level asymmetric multilevel inverter for photovoltaic energy conversion. J. Power Electron. 20, 904-915 (2020)  https://doi.org/10.1007/s43236-020-00083-x
  13. Zhuge, H., Zhang, L., Lou, X., et al.: Evaluation of DPWM schemes for Si/SiC three-level hybrid active NPC inverters. J. Power Electron. 22, 1825-1835
  14. Hua, T., Ye, Y., Wang, X.: A new 7-level inverter for active and reactive power compensation using PEV in grid-connected applications. In: Proc. IEEE international conference on power electronics systems and applications, pp. 1-6 (2020) 
  15. Durgasukumar, G., Pathak, M. K.: THD reduction in performance of multi-level inverter fed induction motor drive. In: Proc. IEEE IICPE, pp. 1-6 (2011) 
  16. Mondal, G., Gopakumar, K., Tekwani, P. N., Levi, E.: A five-level inverter scheme with common-mode voltage elimination by cascading conventional two-level and three-level NPC inverters for an induction motor drive. In: Proc. IEEE European Conference on Power Electronics and Applications, pp. 1-10 (2007) 
  17. Jahan, H. K., Mohammadpour Shotorbani, A., Rostami Noshahr, M. R., Peimani, M., Sabahi, M., Blaabjerg, F.: Partial two-stage four-level inverter for grid-tied PV application. In: Proc. IEEE power electronics, drive systems, and technologies conference, pp. 264-268
  18. Tirupathi, A., Annamalai, K., Veeramraju Tirumala, S.: A three-phase inverter circuit using half-bridge cells and T-NPC for medium-voltage applications. Int J Circ Theor Appl. 48, 1744-1765 (2020)  https://doi.org/10.1002/cta.2833
  19. Dao, N.D., Lee, D.-C.: Operation and control scheme of a five-level hybrid inverter for medium-voltage motor drives. IEEE Trans. Power Electron. 33(12), 10178-10187 (2018)  https://doi.org/10.1109/TPEL.2018.2811182
  20. Narimani, M., Wu, B., Zargari, N.R.: A novel five-level voltage source inverter with sinusoidal pulse width modulator for medium-voltage applications. IEEE Trans. Power Electron. 31(3), 1959-1967 (2016)  https://doi.org/10.1109/TPEL.2015.2440656
  21. Karthik, A., Loganathan, U.: A reduced component count five-level inverter topology for high reliability electric drives. IEEE Trans. Power Electron. 35(1), 725-732 (2020)  https://doi.org/10.1109/TPEL.2019.2913821
  22. Davis, T.T., Dey, A.: Investigation on extending the dc bus utilization of a single-source five-level inverter with Single capacitor-fed H-bridge per phase. IEEE Trans. Power Electron. 34(3), 2914-2922 (2019)  https://doi.org/10.1109/TPEL.2018.2844323
  23. Wang, Z., Gao, C., Chen, C., Xiong, J., Zhang, K.: Ripple analysis and capacitor voltage balancing of five-level hybrid clamped Inverter (5L-HC) for medium-voltage applications. IEEE Access 7, 86077-86089 (2019)  https://doi.org/10.1109/ACCESS.2019.2925125
  24. Pribadi, J., Le, D.D., Lee, D.-C.: Novel control scheme for fvelevel hybrid fying-capacitor inverters without DC-link balancing circuits. IEEE Trans. Power Electron. 37(7), 8133-8145
  25. Saeedifard, M., Iravani, R., Pou, J.: Analysis and control of DC-capacitor-voltage-drift phenomenon of a passive front-end five-level converter. IEEE Trans. Ind. Electron. 54(6), 3255-3266 (2007)  https://doi.org/10.1109/TIE.2007.905967
  26. Wang, K., Zheng, Z., Xu, L., Li, Y.: A generalized carrier-overlapped PWM method for neutral-point-clamped multilevel converters. IEEE Trans. Power Electron. 35(9), 9095-9106 (2020)  https://doi.org/10.1109/TPEL.2020.2969548
  27. Wang, K., Zheng, Z., Xu, L., Li, Y.: Neutral-point voltage balancing method for five-level NPC inverters based on carrier-overlapped PWM. IEEE Trans. Power Electron. 36(2), 1428-1440 (2021)  https://doi.org/10.1109/TPEL.2020.3006960
  28. Kim, M.-S., Lee, D.-C.: DC-link capacitor voltage balancing control without auxiliary circuits for five-level hybrid t-type neural-point clamped inverters. In: IEEE International Conference on Communications and Electronics, pp. 421-425
  29. Singh, S., Sonar, S.: A new SVPWM technique to Reduce the inductor current ripple of three-phase Z-source inverter. IEEE Trans. Ind. Electron. 67(5), 3540-3550 (2020)  https://doi.org/10.1109/TIE.2019.2916298
  30. https://www.infneon.com/cms/en/product/power/igbt/igbt-modules/f450r33t3e3/ (2022). Accessed 24 Sept 2022 
  31. https://www.infneon.com/cms/en/product/power/igbt/igbt-modules/dd500s65k3/ (2022) Accessed 24 Sept 2022 
  32. https://www.mouser.kr/ProductDetail/KEMET/C44UOGT7110M52K?qs=Cb2nCFKsA8p2K3edRsKtNQ%3D%3D (2022) Accessed 24 Sept 2022 
  33. https://www.coilws.com/index.php?main_page=index&cPath=208_212_366 (2022) Accessed 24 Sept 2022