DOI QR코드

DOI QR Code

Multi-vector predictive direct power control for grid-tied three-level inverters with optimized vector application time calculations

  • Ling Mao (College of Electrical Engineering, Shanghai University of Electric Power) ;
  • Yubin Wang (College of Electrical Engineering, Shanghai University of Electric Power) ;
  • Jinbin Zhao (College of Electrical Engineering, Shanghai University of Electric Power) ;
  • Chao Pan (College of Electrical Engineering, Shanghai University of Electric Power) ;
  • Keqing Qu (College of Electrical Engineering, Shanghai University of Electric Power)
  • Received : 2022.05.17
  • Accepted : 2022.10.07
  • Published : 2023.03.20

Abstract

This paper proposes a multi-vector predictive direct power control (P-DPC) for grid-tied T-type three-level inverters with optimized vector application time calculations. The conventional multi-vector P-DPC suffers from the problems of a heavy computational burden and a tedious adjustment process for the weighting factor. To reduce the computational burden, this paper proposes a new space vector division method. The proposed method can reduce the number of candidate vectors and the number of iterations for the cost function. To avoid the need for adjusting the weighting factor, the redundant small vectors are utilized to balance the neutral point voltage. In addition, the Lagrange multiplier method is introduced to optimize the calculation of the prediction vector application time, which improves the control accuracy. Finally, the effectiveness of the proposed method is verified in a hardware-in-the-loop platform.

Keywords

Acknowledgement

National Natural Science Foundation of China, 52177184, Jinbin Zhao.

References

  1. Medouce, H.E., Benalla, H.: Predictive model approach based direct power control for power quality conditioning. Int. J. Syst. Assur. Eng. Manag. 8, 1832-1848 (2017). https://doi.org/10.1007/s13198-017-0679-4
  2. Alsofyani, I.M., Lee, K.B.: Three-level inverter-fed model predictive torque control of a permanent magnet synchronous motor with discrete space vector modulation and simplifed neutral point voltage balancing. J. Power Electron. 22, 22-30 (2022). https://doi.org/10.1007/s43236-021-00330-9
  3. El Ouanjli, N., Derouich, A., El Ghzizal, A., et al.: Direct torque control of doubly fed induction motor using three-level NPC inverter. Prot. Control Mod. Power Syst. 4, 17 (2019). https://doi.org/10.1186/s41601-019-0131-7
  4. Ouchen, S., Benbouzid, M., Blaabjerg, F., Betka, A., Steinhart, H.: Direct power control of shunt active power flter using space vector modulation based on supertwisting sliding mode control. IEEE J. Emerg. Sel. Topics Power Electron. 9(3), 3243-3253 (2021). https://doi.org/10.1109/JESTPE.2020.3007900
  5. Yan, S., Yang, Y., Hui, S.Y., Blaabjerg, F.: A review on direct power control of pulsewidth modulation converters. IEEE Trans. Power Electron. 36(10), 11984-12007 (2021). https://doi.org/10.1109/TPEL.2021.3070548
  6. Vazquez, S., Sanchez, J.A., Carrasco, J.M., Leon, J.I., Galvan, E.: A model-based direct power control for three-phase power converters. IEEE Trans. Ind. Electron 55(4), 1647-1657 (2008)
  7. Alonso-Martinez, J., Eloy-Garcia, J., Santos-Martin, D., Arnaltes, S.: A new variable-frequency optimal direct power control algorithm. IEEE Trans. Industr. Electron. 60(4), 1442-1451 (2013). https://doi.org/10.1109/TIE.2011.2167732
  8. Ma, J., Song, W., Jiao, S., Zhao, J., Feng, X.: Power calculation for direct power control of single-phase three-level rectifers without phase-locked loop. IEEE Trans. Industr. Electron. 63(5), 2871-2882 (2016). https://doi.org/10.1109/TIE.2016.2516959
  9. CortEs, P., RodrIguez, J., Antoniewicz, P., Kazmierkowski, M.: Direct power control of an AFE using predictive control. IEEE Trans. Power Electron. 23(5), 2516-2523 (2008) https://doi.org/10.1109/TPEL.2008.2002065
  10. Zhang, H., Zhang, C., Xing, X., Liu, C., Li, X., Zhang, B.: Threelayer double-vector model predictive control strategy for current harmonic reduction and neutral-point voltage balance in vienna rectifer. IEEE Trans. Transp. Electrifc. 8(1), 251-262 (2022). https://doi.org/10.1109/TTE.2021.3094320
  11. Cheng, Cw., Nian, H., Li, Lq.: Improved three-vector based dead-beat model predictive direct power control strategy for grid-connected inverters. Front. Inf Technol. Electronic Eng. 19, 1420-1431 (2018). https://doi.org/10.1631/FITEE.1601874
  12. Zhang, Z., Fang, H., Gao, F., Rodriguez, J., Kennel, R.: Multiplevector model predictive power control for grid-tied wind turbine system with enhanced steady-state control performance. IEEE Trans. Industr. Electron. 64(8), 6287-6298 (2017). https://doi.org/10.1109/TIE.2017.2682000
  13. Li, X., Xue, Z., Zhang, L., Hua, W.: A low-complexity threevector-based model predictive torque control for spmSM. IEEE Trans. Power Electron. 36(11), 13002-13012 (2021). https://doi.org/10.1109/TPEL.2021.3079147
  14. Zhou, D., Tu, P., Tang, Y.: Multivector model predictive power control of three-phase rectifers with reduced power ripples under nonideal grid conditions. IEEE Trans. Industr. Electron. 65(9), 6850-6859 (2018). https://doi.org/10.1109/TIE.2018.2798583
  15. Yang, G., Hao, S., Fu, C., Chen, Z.: Model predictive direct power control based on improved T-type grid-connected inverter. IEEE J.Emerg.Sel. Topics Power Electron. 7(1), 252-260 (2019). https://doi.org/10.1109/JESTPE.2018.2871113
  16. Yuan, Q., Qian, J., Li, A.: A Simplifed common-mode voltage suppression and neutral-point potential control for the NPC threelevel inverter. J. Electr. Eng. Technol. 14, 2389-2398 (2019). https://doi.org/10.1007/s42835-019-00293-9
  17. Yang, Y., et al.: Low complexity fnite-control-set mpc based on discrete space vector modulation for T-type three-phase threelevel converters. IEEE Trans. Power Electron. 37(1), 392-403 (2022). https://doi.org/10.1109/TPEL.2021.3098661
  18. Yang, Y., et al.: Multiple-voltage-vector model predictive control with reduced complexity for multilevel inverters. IEEE Trans. Transp. Electrifc. 6(1), 105-117 (2020). https://doi.org/10.1109/TTE.2020.2973045
  19. Saeed, M.S.R., Song, W., Yu, B., Wu, X.: Low-complexity deadbeat model predictive current control with duty ratio for fve-phase PMSM drives. IEEE Trans. Power Electron. 35(11), 12085-12099 (2020). https://doi.org/10.1109/TPEL.2020.2983048
  20. Xia, C., Liu, T., Shi, T., Song, Z.: A simplifed fnite-controlset model-predictive control for power converters. IEEE Trans. Industr. Inf. 10(2), 991-1002 (2014). https://doi.org/10.1109/TII.2013.2284558
  21. Bozorgi, A.M., Gholami-Khesht, H., Farasat, M., Mehraeen, S., Monfared, M.: "Model predictive direct power control of threephase grid-connected converters with fuzzy-based duty cycle modulation. IEEE Trans. Industry Appl. 54(5), 4875-4885 (2018). https://doi.org/10.1109/TIA.2018.2839660
  22. Dekka, A., Wu, B., Yaramasu, V., Fuentes, R.L., Zargari, N.R.: Model predictive control of high-power modular multilevel converters-an overview. IEEE J.Emerg. Sel. Topics Power Electron 7(1), 168-183 (2019). https://doi.org/10.1109/JESTPE.2018.2880137
  23. Mora, A., Cardenas, R., Aguilera, R.P., Angulo, A., Lezana, P., Lu, D.D.-C.: Predictive optimal switching sequence direct power control for grid-tied 3L-NPC converters. IEEE Trans. Industr. Electron. 68(9), 8561-8571 (2021). https://doi.org/10.1109/TIE.2020.3009602
  24. Hu, J., Zhu, Z.Q.: Improved voltage-vector sequences on deadbeat predictive direct power control of reversible three-phase gridconnected voltage-source converters. IEEE Trans. Power Electron. 28(1), 254-267 (2013). https://doi.org/10.1109/TPEL.2012.2194512
  25. Yan, S., Chen, J., Tan, S.-C., Hui, S.Y.R.: A new geometric vector optimization of predictive direct power control. IEEE Trans. Power Electron. 35(5), 5427-5436 (2020). https://doi.org/10.1109/TPEL.2019.2944626
  26. Fang Zheng Peng and Jih-Sheng Lai: Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans. Instrum. Meas. 45(1), 293-297 (1996). https://doi.org/10.1109/19.481350
  27. Scoltock, J., Geyer, T., Madawala, U.K.: Model predictive direct power control for grid-connected NPC converters. IEEE Trans. Industr. Electron. 62(9), 5319-5328 (2015). https://doi.org/10.1109/TIE.2015.2410259