DOI QR코드

DOI QR Code

Digital linear slope control method for improving the load transient response of a buck converter

  • Seokwon Kim (Department of Smart Cities, Chung-Ang University) ;
  • Jongun Baek (Department of Smart Cities, Chung-Ang University) ;
  • Junho Shin (Department of Smart Cities, Chung-Ang University) ;
  • Hanhim Sung (Department of Smart Cities, Chung-Ang University) ;
  • Sujeong Lee (Department of Smart Cities, Chung-Ang University) ;
  • Seunguk Yong (School of Energy System Engineering, Chung-Ang University) ;
  • Jong‑Won Shin (School of Energy System Engineering, Chung-Ang University)
  • Received : 2022.12.06
  • Accepted : 2023.01.10
  • Published : 2023.03.20

Abstract

Digital linear slope control (LSC) method is proposed to reduce the output voltage deviation during the load transient of a buck converter. The proposed LSC method modulates the slope of the control signal to suppress the output voltage deviation. The LSC method utilizes the information of the output voltage only and is realized simply by adding a few lines to the digital code of the conventional VMC. The mathematical analysis is conducted to prove the feasibility of the LSC method and the algorithms for the LSC method are presented. A 15 V-5 V 100-kHz prototype buck converter was built and tested to verify the performance of the LSC method.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grants 2021M1A2A2060313 and 2022R1C1C1010027, and Chung-Ang University Graduate Research Scholarship in 2021.

References

  1. Chen, C.L., Lai, W.J., Liu, T.H., Chen, K.H.: Zero current detection technique for fast transient response in buck DC-DC converters, 2008 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2214-2217 (2008)
  2. Malcovati, P., Belloni, M., Gozzini, F., Bazzani, C., Baschirotto, A.: A 0.18-µm CMOS, 91%-effciency, 2-A scalable buck-boost DC-DC converter for LED drivers. IEEE Trans. Power Electron. 29(10), 5392-5398 (2014) https://doi.org/10.1109/TPEL.2013.2294189
  3. Khan, N., Pique, G.V., Pigott, J., Bergveld, H.J., Sherif, A.E., Trescases, O.: An auxiliary-assisted dual-inductor hybrid DC-DC converter with adaptive inductor slew rate for fast transient response in 48-V automotive PoL applications, 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1-6 (2022)
  4. Sable, D.M., Ridley, R.B.: Comparison of performance of single-loop and current-injection control for PWM converters that operate in both continuous and discontinuous modes of operation. IEEE Trans. Power Electron. 7(1), 136-142 (1992) https://doi.org/10.1109/63.124586
  5. Choi, B.: Step load response of a current-mode-controlled DC-to-DC converter. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1115-1121 (1997) https://doi.org/10.1109/7.624347
  6. D. Goder, D., Pelletier, W.R.: V2 architecture provides ultra-fast transient response in switch power supplies. In: Proc. HFPC Conf., pp. 19-23 (1996)
  7. Zhou, G., Xu, J., Wang, J.: Constant-frequency peak-ripple-based control of buck converter in CCM: review, unifcation, and duality. IEEE Trans. Industr. Electron. 61(3), 1280-1291 (2014) https://doi.org/10.1109/TIE.2013.2257143
  8. Tian, S., Lee, F.C., Li, Q., Yan, Y.: Unifed equivalent circuit model and optimal design of V2 controlled buck converters. IEEE Trans. Power Electron. 31(2), 1734-1744 (2016) https://doi.org/10.1109/TPEL.2015.2424913
  9. Duan, X., Huang, A.Q.: Current-mode variable-frequency control architecture for high-current low-voltage DC-DC converters. IEEE Trans. Power Electron. 21(4), 1133-1137 (2006) https://doi.org/10.1109/TPEL.2006.878031
  10. Yan, Y., Lee, F.C., Mattavelli, P.: Comparison of small signal characteristics in current mode control schemes for point-of-load buck converter applications. IEEE Trans. Power Electron. 28(7), 3405-3414 (2013) https://doi.org/10.1109/TPEL.2012.2224673
  11. Bari, S., Li, Q., Lee, F.C.: A new fast adaptive on-time control for transient response improvement in constant on-time control. IEEE Trans. Power Electron. 33(3), 2680-2689 (2018) https://doi.org/10.1109/TPEL.2017.2693382
  12. Meyer, E., Zhang, Z., Liu, Y.F.: An optimal control method for buck converters using a practical capacitor charge balance technique. IEEE IEEE Transactions on Power Electronics 23(4), 1802-1812 (2008) https://doi.org/10.1109/TPEL.2008.925201
  13. Kapat, S., Krein, P.: Improved time optimal control of a buck converter based on capacitor current. IEEE Trans. Power Electron. 27(3), 1444-1454 (2012) https://doi.org/10.1109/TPEL.2011.2163419
  14. Feng, G., Meyer, E., Liu, Y.F.: A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters. IEEE Trans. Power Electron. 22(4), 1489-1498 (2007) https://doi.org/10.1109/TPEL.2007.900605
  15. Corradini, L., Costabeber, A., Mattavelli, P., Saggini, S.: Parameter-independent time-optimal digital control for point-of-load converters. IEEE Trans. Power Electron. 24(10), 2235-2248 (2009) https://doi.org/10.1109/TPEL.2009.2022397
  16. Corradini, L., Babazadeh, A., Bjeleti, A., Maksimovic, D.: Current-limited time-optimal response in digitally controlled DC-DC converters. IEEE Trans. Power Electron. 25(11), 2869-2880 (2010) https://doi.org/10.1109/TPEL.2010.2049661
  17. Meyer, E., Zhang, Z., Liu, Y.F.: Digital charge balance controller to improve the loading/unloading transient response of buck converters. IEEE Trans. Power Electron. 27(3), 1314-1326 (2012) https://doi.org/10.1109/TPEL.2011.2106164
  18. Kim, D., Baek, J., Lee, J., Shin, J., Shin, J.-W.: Implementation of soft-switching auxiliary current control for faster load transient response. IEEE Access 9, 7092-7106 (2021) https://doi.org/10.1109/ACCESS.2021.3049139
  19. Kim, D., Hong, M., Baek, J., Lee, J., Shin, H., Shin, J.-W.: Soft-switching auxiliary current control for improving load transient response of buck converter. IEEE Trans. Power Electron. 36(3), 2488-2494 (2021) https://doi.org/10.1109/TPEL.2020.3016960
  20. Kim, D., Shin, J.-W.: Dynamic response of buck converter with auxiliary current control: analysis and design of practical implementation. IEEE Trans. Power Electron. 36(12), 13917-13929 (2021) https://doi.org/10.1109/TPEL.2021.3087607