DOI QR코드

DOI QR Code

Long-term consistency of clinical sensory testing measures for pain assessment

  • Received : 2023.01.07
  • Accepted : 2023.03.10
  • Published : 2023.04.01

Abstract

Background: Understanding the stability of quantitative sensory tests (QSTs) over time is important to aid clinicians in selecting a battery of tests for assessing and monitoring patients. This study evaluated the short- and long-term reliability of selected QSTs. Methods: Twenty healthy women participated in three experimental sessions: Baseline, 2 weeks, and 6 months. Measurements included pressure pain thresholds (PPT) in the neck, upper back, and leg; Pressure-cuff pain tolerance around the upper-arm; conditioned pain modulation during a pressure-cuff stimulus; and referred pain following a suprathreshold pressure stimulation. Intraclass correlation coefficients (ICC) and minimum detectable change (MDC) were calculated. Results: Reliability for PPT was excellent for all sites at 2 weeks (ICC, 0.96-0.99; MDC, 22-55 kPa) and from good to excellent at 6 months (ICC, 0.88-0.95; MDC, 47-91 kPa). ICC for pressure-cuff pain tolerance indicated excellent reliability at both times (0.91-0.97). For conditioned pain modulation, reliability was moderate for all sites at 2 weeks (ICC, 0.57-0.74; MDC, 24%-35%), while it was moderate at the neck (ICC, 0.54; MDC, 27%) and poor at the upper back and leg at 6 months. ICC for referred pain areas was excellent at 2 weeks (0.90) and good at 6 months (0.86). Conclusions: PPT, pressure pain tolerance, and pressure-induced referred pain should be considered reliable procedures to assess the pain-sensory profile over time. In contrast, conditioned pain modulation was shown to be unstable. Future studies prospectively analyzing the pain-sensory profile will be able to better calculate appropriate sample sizes.

Keywords

Acknowledgement

The authors would like to thank Dr. Megan McPhee Christensen for proof-reading the manuscript.

References

  1. McRae M, Hancock MJ. Adults attending private physiotherapy practices seek diagnosis, pain relief, improved function, education and prevention: a survey. J Physiother 2017; 63: 250-6. https://doi.org/10.1016/j.jphys.2017.08.002
  2. Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2021; 396: 2006-17. Erratum in: Lancet 2021; 397: 198.
  3. McMahon SB, Dargan P, Lanas A, Wiffen P. The burden of musculoskeletal pain and the role of topical non-steroidal anti-inflammatory drugs (NSAIDs) in its treatment. Ten underpinning statements from a global pain faculty. Curr Med Res Opin 2021; 37: 287-92. https://doi.org/10.1080/03007995.2020.1847718
  4. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 2019; 123: e273-83. https://doi.org/10.1016/j.bja.2019.03.023
  5. Roy JS, Bouyer LJ, Langevin P, Mercier C. Beyond the joint: the role of central nervous system reorganizations in chronic musculoskeletal disorders. J Orthop Sports Phys Ther 2017; 47: 817-21.
  6. Edwards RR, Dworkin RH, Sullivan MD, Turk DC, Wasan AD. The role of psychosocial processes in the development and maintenance of chronic pain. J Pain 2016; 17(9 Suppl): T70-92. https://doi.org/10.1016/j.jpain.2016.01.001
  7. Rabey M, Slater H, O'Sullivan P, Beales D, Smith A. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis. Pain 2015; 156: 1874-84. https://doi.org/10.1097/j.pain.0000000000000244
  8. Lluch E, Nijs J, Courtney CA, Rebbeck T, Wylde V, Baert I, et al. Clinical descriptors for the recognition of central sensitization pain in patients with knee osteoarthritis. Disabil Rehabil 2018; 40: 2836-45. https://doi.org/10.1080/09638288.2017.1358770
  9. Daenen L, Nijs J, Roussel N, Wouters K, Van Loo M, Cras P. Dysfunctional pain inhibition in patients with chronic whiplash-associated disorders: an experimental study. Clin Rheumatol 2013; 32: 23-31. https://doi.org/10.1007/s10067-012-2085-2
  10. Beales D, Mitchell T, Moloney N, Rabey M, Ng W, Rebbeck T. Masterclass: a pragmatic approach to pain sensitivity in people with musculoskeletal disorders and implications for clinical management for musculoskeletal clinicians. Musculoskelet Sci Pract 2021; 51: 102221.
  11. Georgopoulos V, Akin-Akinyosoye K, Zhang W, McWilliams DF, Hendrick P, Walsh DA. Quantitative sensory testing and predicting outcomes for musculoskeletal pain, disability, and negative affect: a systematic review and meta-analysis. Pain 2019; 160: 1920-32. https://doi.org/10.1097/j.pain.0000000000001590
  12. Pavlakovic G, Petzke F. The role of quantitative sensory testing in the evaluation of musculoskeletal pain conditions. Curr Rheumatol Rep 2010; 12: 455-61. https://doi.org/10.1007/s11926-010-0131-0
  13. Graven-Nielsen T, Arendt-Nielsen L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat Rev Rheumatol 2010; 6: 599-606. https://doi.org/10.1038/nrrheum.2010.107
  14. Kanner R. Chapter 1 - definitions. In: Pain management secrets. 3rd ed. Edited by Argoff CE, McCleane G. Mosby. 2009, pp 9-14.
  15. Nir RR, Yarnitsky D. Conditioned pain modulation. Curr Opin Support Palliat Care 2015; 9: 131-7. https://doi.org/10.1097/SPC.0000000000000126
  16. Domenech-Garcia V, Palsson TS, Boudreau SA, Bellosta-Lopez P, Herrero P, Graven-Nielsen T. Healthy pain-free individuals with a history of distal radius fracture demonstrate an expanded distribution of experimental referred pain toward the wrist. Pain Med 2020; 21: 2850-62. https://doi.org/10.1093/pm/pnaa228
  17. Zhu GC, Bottger K, Slater H, Cook C, Farrell SF, Hailey L, et al. Concurrent validity of a low-cost and time-efficient clinical sensory test battery to evaluate somatosensory dysfunction. Eur J Pain 2019; 23: 1826-38. https://doi.org/10.1002/ejp.1456
  18. Marcuzzi A, Wrigley PJ, Dean CM, Adams R, Hush JM. The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals. Pain 2017; 158: 1217-23. https://doi.org/10.1097/j.pain.0000000000000901
  19. Nothnagel H, Puta C, Lehmann T, Baumbach P, Menard MB, Gabriel B, et al. How stable are quantitative sensory testing measurements over time? Report on 10-week reliability and agreement of results in healthy volunteers. J Pain Res 2017; 10: 2067-78. https://doi.org/10.2147/JPR.S137391
  20. Christensen SWM, Bellosta-Lopez P, DomenechGarcia V, Herrero P, Palsson TS. Changes in pain sensitivity and conditioned pain modulation during recovery from whiplash-associated disorders. Clin J Pain 2021; 37: 730-9. https://doi.org/10.1097/AJP.0000000000000970
  21. Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hrobjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol 2011; 64: 96-106. https://doi.org/10.1016/j.jclinepi.2010.03.002
  22. Tanaka Y, Shigetoh H, Sato G, Fujii R, Imai R, Osumi M, et al. Classification of circadian pain rhythms and pain characteristics in chronic pain patients: an observational study. Medicine (Baltimore) 2021; 100: e26500.
  23. Rejas J, Ribera MV, Ruiz M, Masrramon X. Psychometric properties of the MOS (Medical Outcomes Study) Sleep Scale in patients with neuropathic pain. Eur J Pain 2007; 11: 329-40. https://doi.org/10.1016/j.ejpain.2006.05.002
  24. Azocar F, Arean P, Miranda J, Munoz RF. Differential item functioning in a Spanish translation of the Beck Depression Inventory. J Clin Psychol 2001; 57: 355-65. https://doi.org/10.1002/jclp.1017
  25. Garcia Campayo J, Rodero B, Alda M, Sobradiel N, Montero J, Moreno S. [Validation of the Spanish version of the Pain Catastrophizing Scale in fibromyalgia]. Med Clin (Barc) 2008; 131: 487-92. Spanish. https://doi.org/10.1157/13127277
  26. Balaguier R, Madeleine P, Vuillerme N. Is one trial sufficient to obtain excellent pressure pain threshold reliability in the low back of asymptomatic individuals? A test-retest study. PLoS One 2016; 11: e0160866.
  27. Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M, Hansson P, et al. Recommendations on practice of conditioned pain modulation (CPM) testing. Eur J Pain 2015; 19: 805-6. https://doi.org/10.1002/ejp.605
  28. Domenech-Garcia V, Palsson TS, Herrero P, Graven-Nielsen T. Pressure-induced referred pain is expanded by persistent soreness. Pain 2016; 157: 1164-72. https://doi.org/10.1097/j.pain.0000000000000497
  29. Domenech-Garcia V, Skuli Palsson T, Boudreau SA, Herrero P, Graven-Nielsen T. Pressure-induced referred pain areas are more expansive in individuals with a recovered fracture. Pain 2018; 159: 1972-9. https://doi.org/10.1097/j.pain.0000000000001234
  30. Boudreau SA, Badsberg S, Christensen SW, Egsgaard LL. Digital pain drawings: assessing touch-screen technology and 3D body schemas. Clin J Pain 2016; 32: 139-45. https://doi.org/10.1097/AJP.0000000000000230
  31. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15: 155-63. Erratum in: J Chiropr Med 2017; 16: 346.
  32. Furlan L, Sterr A. The applicability of standard error of measurement and minimal detectable change to motor learning research-a behavioral study. Front Hum Neurosci 2018; 12: 95.
  33. Waller R, Straker L, O'Sullivan P, Sterling M, Smith A. Reliability of pressure pain threshold testing in healthy pain free young adults. Scand J Pain 2015; 9: 38-41. Erratum in: Scand J Pain 2016; 13: 17.
  34. Black CD, Pickowitz KE. Day-to-day reliability of pressure pain threshold and pain ratings in collegeaged men. Int J Rehabil Res 2015; 38: 213-8. https://doi.org/10.1097/MRR.0000000000000111
  35. Walton DM, Levesque L, Payne M, Schick J. Clinical pressure pain threshold testing in neck pain: comparing protocols, responsiveness, and association with psychological variables. Phys Ther 2014; 94: 827-37. https://doi.org/10.2522/ptj.20130369
  36. Kvistgaard Olsen J, Fener DK, Waehrens EE, Wulf Christensen A, Jespersen A, Danneskiold-Samsoe B, et al. Reliability of pain measurements using computerized cuff algometry: a DoloCuff reliability and agreement study. Pain Pract 2017; 17: 708-17. https://doi.org/10.1111/papr.12514
  37. Graven-Nielsen T, Vaegter HB, Finocchietti S, Handberg G, Arendt-Nielsen L. Assessment of musculoskeletal pain sensitivity and temporal summation by cuff pressure algometry: a reliability study. Pain 2015; 156: 2193-202. https://doi.org/10.1097/j.pain.0000000000000294
  38. Arroyo-Fernandez R, Bravo-Esteban E, DomenechGarcia V, Ferri-Morales A. Pressure-induced referred pain as a biomarker of pain sensitivity in fibromyalgia. Pain Physician 2020; 23: E353-62. https://doi.org/10.36076/ppj.2020/23/E353
  39. Kennedy DL, Kemp HI, Ridout D, Yarnitsky D, Rice ASC. Reliability of conditioned pain modulation: a systematic review. Pain 2016; 157: 2410-9. https://doi.org/10.1097/j.pain.0000000000000689
  40. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Reliability of the conditioned pain modulation paradigm to assess endogenous inhibitory pain pathways. Pain Res Manag 2012; 17: 98-102. https://doi.org/10.1155/2012/610561
  41. Valencia C, Kindler LL, Fillingim RB, George SZ. Stability of conditioned pain modulation in two musculoskeletal pain models: investigating the influence of shoulder pain intensity and gender. BMC Musculoskelet Disord 2013; 14: 182.
  42. Roldan CJ, Abdi S. Quantitative sensory testing in pain management. Pain Manag 2015; 5: 483-91. https://doi.org/10.2217/pmt.15.37
  43. Mason KJ, O'Neill TW, Lunt M, Jones AKP, McBeth J. Psychosocial factors partially mediate the relationship between mechanical hyperalgesia and selfreported pain. Scand J Pain 2018; 18: 59-69. https://doi.org/10.1515/sjpain-2017-0109
  44. Polianskis R, Graven-Nielsen T, Arendt-Nielsen L. Spatial and temporal aspects of deep tissue pain assessed by cuff algometry. Pain 2002; 100: 19-26. https://doi.org/10.1016/S0304-3959(02)00162-8
  45. Jensen B. Chronic pain assessment from bench to bedside: lessons along the translation continuum. Transl Behav Med 2016; 6: 596-604. https://doi.org/10.1007/s13142-015-0370-8
  46. Palsson TS, Christensen SWM, De Martino E, Graven-Nielsen T. Pain and disability in low back pain can be reduced despite no significant improvements in mechanistic pain biomarkers. Clin J Pain 2021; 37: 330-8. https://doi.org/10.1097/AJP.0000000000000927
  47. McPhee ME, Graven-Nielsen T. Recurrent low back pain patients demonstrate facilitated pronociceptive mechanisms when in pain, and impaired antinociceptive mechanisms with and without pain. Pain 2019; 160: 2866-76. https://doi.org/10.1097/j.pain.0000000000001679
  48. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med 1998; 17: 101-10. https://doi.org/10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E
  49. Kamper SJ. Showing confidence (intervals). Braz J Phys Ther 2019; 23: 277-8. https://doi.org/10.1016/j.bjpt.2019.01.003