DOI QR코드

DOI QR Code

Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification

  • Deded Sarip NAWAWI (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Andita MARIA (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Rizal Danang FIRDAUS (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Istie Sekartining RAHAYU (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Adesna FATRAWANA (Department of Forestry, Faculty of Agriculture, Khairun University) ;
  • Fadlan PRAMATANA (Department of Forestry, Faculty of Agriculture, Nusa Cendana University) ;
  • Pamona Silvia SINAGA (Department of Forestry, Faculty of Agriculture, Nusa Cendana University) ;
  • Widya FATRIASARI (Department of Forest Products, Faculty of Forestry and Environment, IPB University)
  • 투고 : 2022.10.16
  • 심사 : 2023.01.26
  • 발행 : 2023.03.25

초록

Densification is an effective method for improving the physical and mechanical properties of low-density wood. However, the set-recovery of dimensions was found to be the problem of densified wood due to low fixation during the densification process. Alkali pretreatment before densification is thought to be a modification process to improve the dimensional stability of densified wood. In this research, the wood samples used were boiled in a 1.25 N sodium hydroxide (NaOH) solution at different times, followed by densification for 5 h at 100℃. The alkali pretreatment for 1, 3, and 5 h of boiling increased the dimensional stability of densified woods and anti-swelling efficiency values were 8.52%, 63.24%, and 48.94%, respectively. The boiling of wood in NaOH solution decreased the holocellulose content, as well as lignin to a lesser degree, and a lower crystallinity index was observed. The lower hydroxyl groups and a higher proportion of lignin in treated samples seem to have contributed to the high dimensional stability detected.

키워드

과제정보

The authors are grateful for the facilities, as well as scientific and technical support provided by the Integrated Laboratory of Bioproducts (iLab) Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN) through E-Layanan Sains Badan Riset dan Inovasi Nasional.

참고문헌

  1. Akgul, M., Gumuskaya, E., Korkut, S. 2007. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science and Technology 41: 281-289.  https://doi.org/10.1007/s00226-006-0110-9
  2. Amin, Y., Dwianto, W. 2006. Pengaruh suhu dan tekanan uap air terhadap fiksasi kayu kompresi dengan menggunakan close system compression. Jurnal Ilmu dan Teknologi Kayu Tropis 4(2): 55-60. 
  3. Augustina, S., Wahyudi, I., Darmawan, I.W., Malik, J., Basri, E., Kojima, Y. 2020. Specific gravity and dimensional stability of boron-densified wood on three lesser-used species from Indonesia. Journal of the Korean Wood Science and Technology 48(4): 458-471.  https://doi.org/10.5658/WOOD.2020.48.4.458
  4. Augustina, S., Wahyudi, I., Dwianto, W., Darmawan, T. 2022. Effect of sodium hydroxide, succinic acid and their combination on densified wood properties. Forests 13(2): 293. 
  5. Brown, S. 1997. Estimating Biomass and Biomass Change of Tropical Forests: A Primer. Food and Agriculture Organization of the United Nations [FAO], Rome, Italy. 
  6. Chen, L., Wang, X., Yang, H., Lu, Q., Li, D., Yang, Q., Chen, H. 2015. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 113: 499-507.  https://doi.org/10.1016/j.jaap.2015.03.018
  7. Dence, C.W. 1992. The Determination of Lignin. In: Methods in Lignin Chemistry, Ed. by Lin, S.Y. and Dence, C.W. Springer Berlin, Heidelberg, Germany. pp. 33-61. 
  8. Devi, R.R., Ali, I., Maji, T.K. 2003. Chemical modification of rubber wood with styrene in combination with a crosslinker: Effect on dimensional stability and strength property. Bioresource Technology 88(3): 185-188.  https://doi.org/10.1016/S0960-8524(03)00003-8
  9. Dwianto, W., Morooka, T., Norimoto, M., Kitajima, T. 1999. Stress relaxation of sugi (Cryptomeria japonicaD.Don) wood in radial compression under high temperature steam. Holzforschung 53(5): 541-546.  https://doi.org/10.1515/HF.1999.089
  10. Esteves, B., Ribeiro, F., Cruz-Lopes, L., Ferreira, J., Domingos, I., Duarte, M., Duarte, S., Lina, N. 2017. Densification and heat treatment of maritime pine wood. Wood Research 62(3): 373-388. 
  11. Esteves, B.M., Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404.  https://doi.org/10.15376/biores.4.1.Esteves
  12. Fang, C.H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P. 2012. Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products 70: 155-163.  https://doi.org/10.1007/s00107-011-0524-4
  13. Fatrawana, A., Maulana, S., Nawawi, D.S., Sari, R.K., Hidayat, W., Park, S.H., Febrianto, F., Lee, S.H., Kim, N.H. 2019. Changes in chemical components of steam-treated betung bamboo strands and their effects on the physical and mechanical properties of bamboo-oriented strand boards. European Journal of Wood and Wood Products 77: 731-739.  https://doi.org/10.1007/s00107-019-01426-7
  14. Fengel, D., Wegener, G. 1984. Wood: Chemistry, Ultra- structure, Reactions. John Wiley & Sons, Berlin, Germany.
  15. Gasparik, M., Gaff, M. 2015. Influence of densification on bending strength of beech wood. Wood Research 60(2): 211-218. 
  16. Ghani, R.S.M., Lee, M.D. 2021. Challenges of wood modification process for plantation Eucalyptus: A review of Australian setting. Journal of the Korean Wood Science and Technology 49(2): 191-209.  https://doi.org/10.5658/WOOD.2021.49.2.191
  17. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58.  https://doi.org/10.5658/WOOD.2022.50.1.46
  18. Hon, D.N.S. 1996. Chemical Modification of Lignocellulosic Materials. Marcel Dekker, New York, NY, USA. 
  19. Hornus, M.N., Cheng, G., Erramuspe, I.B.V., Peresin, M.S., Gallagher, T., Via, B. 2020. Oriented strand board with improved dimensional stability by extraction of hemicelluloses. Wood Fiber Science 52(3): 257-265.  https://doi.org/10.22382/wfs-2020-024
  20. Jain, B., Mallya, R., Nayak, S.Y., Heckadka, S.S., Prabhu, S., Mahesha, G.T., Sancheti, G. 2022. Influence of alkali and silane treatment on the physico-mechanical properties of Grewia serrulata fibres. Journal of the Korean Wood Science and Technology 50(5): 325-337.  https://doi.org/10.5658/WOOD.2022.50.5.325
  21. Jamsa, S., Viitaniemi, P. 2001. Heat Treatment of Wood: Better Durability without Chemicals. In: Review on Heat Treatments of Wood, Ed. by Rapp, A.O. European Commission, Brussels, Belgium. 
  22. Kacikova, D., Kacik, F., Cabalova, I., Durkovic, J. 2013. Effects of thermal treatment on chemical, mechanical, and color traits. Bioresource Technology 144: 669-674.  https://doi.org/10.1016/j.biortech.2013.06.110
  23. Kim, A., Kim, N.H. 2019. Effect of heat treatment and particle size on the crystalline properties of wood cellulose. Journal of the Korean Wood Science and Technology 47(3): 299-310.  https://doi.org/10.5658/WOOD.2019.47.3.299
  24. Kim, Y.K., Kwon, G.J., Kim, A.R., Lee, H.S., Purusatama, B., Lee, S.H., Kang, C.W., Kim, N.H. 2018. Effects of heat treatment on the characteristics of royal Paulownia (Paulownia tomentosa(Thunb.) Steud.) wood grown in Korea. Journal of the Korean Wood Science and Technology 46(5): 511-526.  https://doi.org/10.5658/WOOD.2018.46.5.511
  25. Kutnar, A., Kamke, F.A. 2012. Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Science and Technology 46: 953-964.  https://doi.org/10.1007/s00226-011-0456-5
  26. Laine, K., Rautkari, L., Hughes, M., Kutnar, A. 2013. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. European Journal of Wood and Wood Products 71(1): 17-23.  https://doi.org/10.1007/s00107-012-0647-2
  27. Laine, K., Segerholm, K., Walinder, M., Rautkari, L., Hughes, M., Lankveld, C. 2016. Surface densification of acetylated wood. European Journal of Wood and Wood Products 74: 829-835.  https://doi.org/10.1007/s00107-016-1077-3
  28. Lee, J.M., Lee, W.H. 2018. Dimensional stabilization through heat treatment of thermally compressed wood of Korean pine. Journal of the Korean Wood Science and Technology 46(5): 471-485.  https://doi.org/10.5658/WOOD.2018.46.5.471
  29. Lukmandaru, G., Susanti, D., Widyorini, R. 2018. Sifat kimia kayu mahoni yang dimodifikasi dengan perlakuan panas. Jurnal Penelitian Kehutanan Wallacea 7(1): 37-46.  https://doi.org/10.18330/jwallacea.2018.vol7iss1pp37-46
  30. Maulana, M.I., Murda, R.A., Purusatama, B.D., Sari, R.K., Nawawi, D.S., Nikmatin, S., Hidayat, W., Lee, S.H., Febrianto, F., Kim, N.H. 2021. Effect of alkali-washing at different concentration on the chemical compositions of the steam treated bamboo strands. Journal of the Korean Wood Science and Technology 49(1): 14-22.  https://doi.org/10.5658/WOOD.2021.49.1.14
  31. Naumann, A., Peddireddi, S., Kues, U., Polle, A. 2007. Fourier Transform Infrared Microscopy in Wood Analysis. In: Wood Production, Wood Technology, and Biotechnological Impacts, Ed. by Kues, U. Universitasverlag Gottingen, Gottingen, Germany. pp. 179-196. 
  32. Navi, P., Girardet, F. 2000. Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3): 287-293.  https://doi.org/10.1515/HF.2000.048
  33. Nawawi, D.S., Fatrawana, A., Syafii, W. 2021. Kelarutan lignin kayu sengon dan leda dalam ekstraksi alkali. Jurnal Ilmu Kehutanan 15(1): 82-88.  https://doi.org/10.22146/jik.v15i1.1512
  34. Neyses, B., Rautkari, L., Yamamoto, A., Sandberg, D. 2017. Pre-treatment with sodium silicate, sodium hydroxide, ionic liquids or methacrylate resin to reduce the set-recovery and increase the hardness of surface-densified Scots pine. iForest-Biogeosciences and Forestry 10(5): 857-864.  https://doi.org/10.3832/ifor2385-010
  35. Priadi, T., Sholihah, M., Karlinasari, L. 2019. Water absorption and dimensional stability of heat-treated fast-growing hardwoods. Journal of the Korean Wood Science and Technology 47(5): 567-578.  https://doi.org/10.5658/WOOD.2019.47.5.567
  36. Schwarze, F.W.M.R., Spycher, M. 2005. Resistance of thermo-hygro-mechanically densified wood to colonisation and degradation by brown-rot fungi. Holzforschung 59(3): 358-363.  https://doi.org/10.1515/HF.2005.059
  37. Sjostrom, E. 1991. Wood Chemistry: Fundamentals and Application. Academic Press, Cambridge, MA, USA. 
  38. Song, J., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., Li, Y., Kuang, Y., Li, Y., Quispe, N., Yao, Y., Gong, A., Leiste, U.H., Bruck, H.A., Zhu, J.Y., Vellore, A., Li, H., Minus, M.L., Jia, Z., Martini, A., Li, T., Hu, L. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554(7691): 224-228.  https://doi.org/10.1038/nature25476
  39. Sun, W., Shen, H., Cao, J. 2016. Modification of wood by glutaraldehyde and poly(vinyl alcohol). Materials & Design 96: 392-400.  https://doi.org/10.1016/j.matdes.2016.02.044
  40. Technical Association of the Pulp and Paper Industry [TAPPI]. 1996. TAPPI Test Methods. TAPPI Press, Atlanta, GA, USA. 
  41. Westin, M., Sterley, M., Rossi, F., Herve, J.J. 2009. Compreg-type products by furfurylation during hot-pressing. Wood Material Science & Engineering 4(1-2): 67-75.  https://doi.org/10.1080/17480270903350314
  42. Yunianti, A.D., Tirtayasa, K.P., Suhasman, S., Taskirawati, I., Agussalim, A., Muin, M. 2019. Modified densification process for increasing strength properties of pine and gmelina wood from community forest. Journal of the Korean Wood Science and Technology 47(4): 418-424.  https://doi.org/10.5658/WOOD.2019.47.4.418
  43. Zhao, H., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M., Holladay, J.E. 2006. Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy & Fuels 20(2): 807-811.  https://doi.org/10.1021/ef050319a