DOI QR코드

DOI QR Code

Accuracy of three-dimensional periodontal ligament models generated using cone-beam computed tomography at different resolutions for the assessment of periodontal bone loss

  • Hangmiao Lyu (Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Li Xu (Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Huimin Ma (Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Jianxia Hou (Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Xiaoxia Wang (Department of Oral and Maxillofacial Surgery, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Yong Wang (Center of Digital Dentistry, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology; Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Yijiao Zhao (Center of Digital Dentistry, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology; Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Weiran Li (Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology) ;
  • Xiaotong Li (Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology)
  • Received : 2022.05.24
  • Accepted : 2022.11.16
  • Published : 2023.03.25

Abstract

Objective: To develop a method for generating three-dimensional (3D) digital models of the periodontal ligament (PDL) using 3D cone-beam computed tomography (CBCT) reconstruction and to evaluate the accuracy and agreement of the 3D PDL models in the measurement of periodontal bone loss. Methods: CBCT data collected from four patients with skeletal Class III malocclusion prior to periodontal surgery were reconstructed at three voxel sizes (0.2 mm, 0.25 mm, and 0.3 mm), and 3D tooth and alveolar bone models were generated to obtain digital PDL models for the maxillary and mandibular anterior teeth. Linear measurements of the alveolar bone crest obtained during periodontal surgery were compared with the digital measurements for assessment of the accuracy of the digital models. The agreement and reliability of the digital PDL models were analyzed using intra- and interexaminer correlation coefficients and Bland-Altman plots. Results: Digital models of the maxillary and mandibular anterior teeth, PDL, and alveolar bone of the four patients were successfully established. Relative to the intraoperative measurements, linear measurements obtained from the 3D digital models were accurate, and there were no significant differences among different voxel sizes at different sites. High diagnostic coincidence rates were found for the maxillary anterior teeth. The digital models showed high intra- and interexaminer agreement. Conclusions: Digital PDL models generated by 3D CBCT reconstruction can provide accurate and useful information regarding the alveolar crest morphology and facilitate reproducible measurements. This could assist clinicians in the evaluation of periodontal prognosis and establishment of an appropriate orthodontic treatment plan.

Keywords

Acknowledgement

This study was supported by the National Program for Multidisciplinary Cooperative Treatment on Major Diseases (PKUSSNMP-201902).

References

  1. Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 1997;13:20-40. https://doi.org/10.1111/j.1600-0757.1997.tb00094.x
  2. de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. J Periodontal Res 2017;52:965-74. https://doi.org/10.1111/jre.12477
  3. Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Front Oral Biol 2016;18:1-8. https://doi.org/10.1159/000351894
  4. Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary orthodontics. 6th ed. Philadelphia: Elsevier; 2018.
  5. Park SB, An SY, Han WJ, Park JT. Three-dimensional measurement of periodontal surface area for quantifying inflammatory burden. J Periodontal Implant Sci 2017;47:154-64. https://doi.org/10.5051/jpis.2017.47.3.154
  6. Lee S, Hwang S, Jang W, Choi YJ, Chung CJ, Kim KH. Assessment of lower incisor alveolar bone width using cone-beam computed tomography images in skeletal Class III adults of different vertical patterns. Korean J Orthod 2018;48:349-56. https://doi.org/10.4041/kjod.2018.48.6.349
  7. Kook YA, Kim G, Kim Y. Comparison of alveolar bone loss around incisors in normal occlusion samples and surgical skeletal class III patients. Angle Orthod 2012;82:645-52. https://doi.org/10.2319/070111-424.1
  8. Fleiner J, Hannig C, Schulze D, Stricker A, Jacobs R. Digital method for quantification of circumferential periodontal bone level using cone beam CT. Clin Oral Investig 2013;17:389-96. https://doi.org/10.1007/s00784-012-0715-3
  9. Hong HH, Hong A, Huang YF, Liu HL. Incompatible amount of 3-D and 2-D periodontal attachments on micro-CT scanned premolars. PLoS One 2018;13:e0193894. Erratum in: PLoS One 2018;13:e0209206. https://doi.org/10.1371/journal.pone.0209206
  10. Hong HH, Chang CC, Hong A, Liu HL, Wang YL, Chang SH, et al. Decreased amount of supporting alveolar bone at single-rooted premolars is under estimated by 2D examinations. Sci Rep 2017;8:45774.
  11. Klock KS, Gjerdet NR, Haugejorden O. Periodontal attachment loss assessed by linear and area measurements in vitro. J Clin Periodontol 1993;20:443-7. https://doi.org/10.1111/j.1600-051X.1993.tb00386.x
  12. Gu Y, Tang Y, Zhu Q, Feng X. Measurement of root surface area of permanent teeth with root variations in a Chinese population-a micro-CT analysis. Arch Oral Biol 2016;63:75-81. https://doi.org/10.1016/j.archoralbio.2015.12.001
  13. Al-Rawi B, Hassan B, Vandenberge B, Jacobs R. Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans. J Oral Rehabil 2010;37:352-8. https://doi.org/10.1111/j.1365-2842.2010.02065.x
  14. Wang Y, He S, Guo Y, Wang S, Chen S. Accuracy of volumetric measurement of simulated root resorption lacunas based on cone beam computed tomography. Orthod Craniofac Res 2013;16:169-76. https://doi.org/10.1111/ocr.12016
  15. Tasanapanont J, Apisariyakul J, Wattanachai T, Sriwilas P, Midtbo M, Jotikasthira D. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography. Imaging Sci Dent 2017;47:117-22. https://doi.org/10.5624/isd.2017.47.2.117
  16. Palkovics D, Mangano FG, Nagy K, Windisch P. Digital three-dimensional visualization of intrabony periodontal defects for regenerative surgical treatment planning. BMC Oral Health 2020;20:351.
  17. Tayman MA, Kamburoglu K, Kucuk O, Ates FSO, Gunhan M. Comparison of linear and volumetric measurements obtained from periodontal defects by using cone beam-CT and micro-CT: an in vitro study. Clin Oral Investig 2019;23:2235-44. https://doi.org/10.1007/s00784-018-2665-x
  18. Mito T, Sato K, Mitani H. Cervical vertebral bone age in girls. Am J Orthod Dentofacial Orthop 2002;122:380-5. https://doi.org/10.1067/mod.2002.126896
  19. Vasir NS, Thompson RT, Davies TM. Dental and skeletal changes following sagittal split osteotomy for correction of mandibular prognathism. Eur J Orthod 1991;13:134-42. https://doi.org/10.1093/ejo/13.2.134
  20. Forst D, Nijjar S, Flores-Mir C, Carey J, Secanell M, Lagravere M. Comparison of in vivo 3D cone-beam computed tomography tooth volume measurement protocols. Prog Orthod 2014;15:69.
  21. Jing WD, Jiao J, Xu L, Hou JX, Li XT, Wang XX, et al. Periodontal soft- and hard-tissue changes after augmented corticotomy in Chinese adult patients with skeletal Angle Class III malocclusion: a nonrandomized controlled trial. J Periodontol 2020;91:1419-28. https://doi.org/10.1002/JPER.19-0522
  22. Scarfe WC, Azevedo B, Pinheiro LR, Priaminiarti M, Sales MAO. The emerging role of maxillofacial radiology in the diagnosis and management of patients with complex periodontitis. Periodontol 2000 2017;74:116-39. https://doi.org/10.1111/prd.12193
  23. Kim DM, Bassir SH. When is cone-beam computed tomography imaging appropriate for diagnostic inquiry in the management of inflammatory periodontitis? An American Academy of Periodontology best evidence review. J Periodontol 2017;88:978-98. https://doi.org/10.1902/jop.2017.160505
  24. Choi IGG, Cortes ARG, Arita ES, Georgetti MAP. Comparison of conventional imaging techniques and CBCT for periodontal evaluation: a systematic review. Imaging Sci Dent 2018;48:79-86. https://doi.org/10.5624/isd.2018.48.2.79
  25. Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review. J Digit Imaging 2013;26:813-20. https://doi.org/10.1007/s10278-012-9562-7
  26. Maret D, Telmon N, Peters OA, Lepage B, Treil J, Inglese JM, et al. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac Radiol 2012;41:649-55. https://doi.org/10.1259/dmfr/81804525
  27. Dong T, Yuan L, Liu L, Qian Y, Xia L, Ye N, et al. Detection of alveolar bone defects with three different voxel sizes of cone-beam computed tomography: an in vitro study. Sci Rep 2019;9:8146.
  28. Sang YH, Hu HC, Lu SH, Wu YW, Li WR, Tang ZH. Accuracy assessment of three-dimensional surface reconstructions of in vivo teeth from cone-beam computed tomography. Chin Med J (Engl) 2016;129:1464-70. https://doi.org/10.4103/0366-6999.183430
  29. Patcas R, Muller L, Ullrich O, Peltomaki T. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofacial Orthop 2012;141:41-50. https://doi.org/10.1016/j.ajodo.2011.06.034
  30. Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H. Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 2011;139:e117-27. https://doi.org/10.1016/j.ajodo.2010.08.016
  31. Wood R, Sun Z, Chaudhry J, Tee BC, Kim DG, Leblebicioglu B, et al. Factors affecting the accuracy of buccal alveolar bone height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 2013;143:353-63. https://doi.org/10.1016/j.ajodo.2012.10.019
  32. de-Azevedo-Vaz SL, Vasconcelos Kde F, Neves FS, Melo SL, Campos PS, Haiter-Neto F. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;115:121-7. https://doi.org/10.1016/j.oooo.2012.10.003
  33. Icen M, Orhan K, Seker C, Geduk G, Cakmak Ozlu F, Cengiz MI. Comparison of CBCT with different voxel sizes and intraoral scanner for detection of periodontal defects: an in vitro study. Dentomaxillofac Radiol 2020;49:20190197.
  34. Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol 2015;44:20150078.
  35. Harris BT, Montero D, Grant GT, Morton D, Llop DR, Lin WS. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: a clinical report. J Prosthet Dent 2017;117:197-204. https://doi.org/10.1016/j.prosdent.2016.06.012
  36. Lim SW, Moon RJ, Kim MS, Oh MH, Lee KM, Hwang HS, et al. Construction reproducibility of a composite tooth model composed of an intraoral-scanned crown and a cone-beam computed tomography-scanned root. Korean J Orthod 2020;50:229-37. https://doi.org/10.4041/kjod.2020.50.4.229
  37. Lee RJ, Weissheimer A, Pham J, Go L, de Menezes LM, Redmond WR, et al. Three-dimensional monitoring of root movement during orthodontic treatment. Am J Orthod Dentofacial Orthop 2015;147:132-42. https://doi.org/10.1016/j.ajodo.2014.10.010
  38. Lee RJ, Pham J, Choy M, Weissheimer A, Dougherty HL Jr, Sameshima GT, et al. Monitoring of typodont root movement via crown superimposition of single cone-beam computed tomography and consecutive intraoral scans. Am J Orthod Dentofacial Orthop 2014;145:399-409. https://doi.org/10.1016/j.ajodo.2013.12.011
  39. Wang T, Pei X, Luo F, Jia L, Qin H, Cheng X, et al. Evaluation of tooth root surface area using a three-dimensional scanning technique and cone beam computed tomographic reconstruction in vitro. Arch Oral Biol 2017;84:13-8. https://doi.org/10.1016/j.archoralbio.2017.07.014
  40. Kuralt M, Gaspersic R, Fidler A. The precision of gingival recession measurements is increased by an automated curvature analysis method. BMC Oral Health 2021;21:505.
  41. Pini-Prato G, Franceschi D, Cairo F, Nieri M, Rotundo R. Classification of dental surface defects in areas of gingival recession. J Periodontol 2010;81:885-90. https://doi.org/10.1902/jop.2010.090631
  42. Maret D, Peters OA, Galibourg A, Dumoncel J, Esclassan R, Kahn JL, et al. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes. J Endod 2014;40:1321-6. https://doi.org/10.1016/j.joen.2014.04.014
  43. Gu Y, Zhu Q, Tang Y, Zhang Y, Feng X. Measurement of root surface area of permanent teeth in a Chinese population. Arch Oral Biol 2017;81:26-30. https://doi.org/10.1016/j.archoralbio.2017.04.015
  44. Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y. Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop 2010;137:16.e1-6; discussion 16-7. https://doi.org/10.1016/j.ajodo.2009.08.023