DOI QR코드

DOI QR Code

개선된 브레즈넘 알고리즘을 이용한 탄흔 시뮬레이션

Ballistic Cavity Simulation using Modified Bresenham Algorithm

  • 석윤지 (성결대학교 미디어소프트웨어학과) ;
  • 진성아 (성결대학교 미디어소프트웨어학과)
  • 투고 : 2023.03.30
  • 심사 : 2023.05.08
  • 발행 : 2023.05.31

초록

게임이나 가상현실에서 차세대 무기를 사용한 콘텐츠가 지속적으로 등장하고 있다. 스토리 전개의 상황에서, 소총과 탄환의 고유한 특성에 따라 목표물의 탄흔의 흔적이 다르게 관찰된다. 또한 범죄 과학수사 중 Forensic ballistics을 활용하여 범죄 흔적을 수사하는 일례도 존재한다. 이 과정 속에서 Ballistic Coefficient와 탄도에 의한 cavity 사이의 관계를 파악하는 일은 매우 중요하다. 본문에서는 modified Bresenham's line algorithm을 이용하여 게임이나 가상현실에서 현실감을 높여줄 수 있는 물리기반 공동 시뮬레이션을 제안하였다.

Content featuring next-generation weapons is continuously appearing in games and virtual reality. In the context of story development, the traces of a target's bullet marks are observed differently according to the unique characteristics of the rifle and bullet. Additionally, there is an example of using forensic ballistics to investigate crime by examining the traces of bullets. Understanding the relationship between the ballistic coefficient and cavity by ballistics is crucial during this process. This paper proposes a physics-based cavity simulation using the modified Bresenham's line algorithm, which can enhance realism in games and virtual reality. This simulation accurately models the trajectory of bullets and cavity formation upon impact, creating a more realistic representation of how bullets interact with materials. Overall, physics-based simulations can greatly enhance the realism and immersion of games and virtual reality experiences and can have applications in forensic investigations.

키워드

참고문헌

  1. Heckler & Koch, https://www.heckler-koch.com/en/Products/Military%20and%20Law%20Enforcement/Assault%20rifles/HK433, accessed 17 March 2023.
  2. Israel Weapon Industries, http://iwi.net, accessed 24 March 2023.
  3. T. Michael (Eds.), Forensic Pathology Reviews, Springer Science & Business Media, Vol. 4, 2007. DOI:10.1007/978-1-59259-921-9
  4. C. Weyermann, and C. Roux, "A different perspective on the forensic science crisis." Forensic Science International Vol. 323, No. 110779, pp. 1-7, 2021. DOI:10.1016/j.forsciint.2021.110779
  5. K. Park, Y. Yoochang and S. Chin. "Design of Physically-based Virtual Cavity Simulation," DEStech Transactions on Computer Science and Engineering pp. 43-47, 2018. http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=68415
  6. S.W. Sohn, D.S. Lee, S.H. Hong and Y.T. Kim, "A Study on the shape deformation of ball projectile (5.56mm) under the low velocity impact," Proceedings of Korean Society for Precision Engineering pp. 865-868, May 2002.https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=NPAP08044596&dbt=NPAP
  7. C. L. Farrar, D. W. Leeming, Military Ballistics. A Basic Manual, Brasseys, 1983. ISBN 10:0080283438
  8. Incredible Super Slow Motion Bullet Impact! - M855A1, https://youtu.be/fX4ODh1g4eM, accessed 17 March 2023
  9. S. Shukla, and B. Haider, "Monophonic music composition using genetic algorithm and Bresenham's line algorithm," Multimedia Tools and Applications Vol. 81, No. 18, pp. 26483-26503, 2022. DOI:10.1007/s11042-022-12185-8 
  10. E. Catmull and R. Raphael. "A class of local interpolating splines." Computer aided geometric design. pp. 317-326, 1974. DOI:10.1016/B978-0-12-079050-0.50020-5