DOI QR코드

DOI QR Code

Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases

  • Seyoung Jung (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jeong Seok Lee (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.01.01
  • Accepted : 2023.01.24
  • Published : 2023.02.28

Abstract

Recent technical advances have enabled unbiased transcriptomic and epigenetic analysis of each cell, known as "single-cell analysis". Single-cell analysis has a variety of technical approaches to investigate the state of each cell, including mRNA levels (transcriptome), the immune repertoire (immune repertoire analysis), cell surface proteins (surface proteome analysis), chromatin accessibility (epigenome), and accordance with genome variants (eQTLs; expression quantitative trait loci). As an effective tool for investigating robust immune responses in coronavirus disease 2019 (COVID-19), many researchers performed single-cell analysis to capture the diverse, unbiased immune cell activation and differentiation. Despite challenges elucidating the complicated immune microenvironments of chronic inflammatory diseases using existing experimental methods, it is now possible to capture the simultaneous immune features of different cell types across inflamed tissues using various single-cell tools. In this review, we introduce patient-based and experimental mouse model research utilizing single-cell analyses in the field of chronic inflammatory diseases, as well as multi-organ atlas targeting immune cells.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (2022R1A4A3034038, 2022M3A9D3016848, and NRF-2022R1C1C1012634).

References

  1. Absinta, M., Maric, D., Gharagozloo, M., Garton, T., Smith, M.D., Jin, J., Fitzgerald, K.C., Song, A., Liu, P., Lin, J.P., et al. (2021). A lymphocytemicroglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709-714.  https://doi.org/10.1038/s41586-021-03892-7
  2. Alber, S., Kumar, S., Liu, J., Huang, Z.M., Paez, D., Hong, J., Chang, H.W., Bhutani, T., Gensler, L.S., and Liao, W. (2022). Single cell transcriptome and surface epitope analysis of ankylosing spondylitis facilitates disease classification by machine learning. Front. Immunol. 13, 838636. 
  3. Aletaha, D. and Smolen, J.S. (2018). Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360-1372.  https://doi.org/10.1001/jama.2018.13103
  4. Argyriou, A., Wadsworth, M.H., 2nd, Lendvai, A., Christensen, S.M., Hensvold, A.H., Gerstner, C., van Vollenhoven, A., Kravarik, K., Winkler, A., Malmstrom, V., et al. (2022). Single cell sequencing identifies clonally expanded synovial CD4(+) T(PH) cells expressing GPR56 in rheumatoid arthritis. Nat. Commun. 13, 4046. 
  5. Armstrong, A.W. and Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323, 1945-1960.  https://doi.org/10.1001/jama.2020.4006
  6. Ashouri, J., McCarthy, E., Yu, S., Perlmutter, N., Lin, C., DeRisi, J., Ye, C.J., and Weiss, A. (2022). Naive arthritogenic SKG T cells have a defect in anergy and a repertoire pruned by superantigen. BioRxiv, https://doi.org/10.1101/2022.01.13.476250 
  7. Attfield, K.E., Jensen, L.T., Kaufmann, M., Friese, M.A., and Fugger, L. (2022). The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734-750.  https://doi.org/10.1038/s41577-022-00718-z
  8. Boland, B.S., He, Z., Tsai, M.S., Olvera, J.G., Omilusik, K.D., Duong, H.G., Kim, E.S., Limary, A.E., Jin, W., Milner, J.J., et al. (2020). Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432. 
  9. Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., Chang, H.Y., and Greenleaf, W.J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486-490.  https://doi.org/10.1038/nature14590
  10. Chiou, J., Geusz, R.J., Okino, M.L., Han, J.Y., Miller, M., Melton, R., Beebe, E., Benaglio, P., Huang, S., Korgaonkar, K., et al. (2021). Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 594, 398-402.  https://doi.org/10.1038/s41586-021-03552-w
  11. Cho, M.Z., Lee, H.G., Yoon, J.W., Kim, G.R., Koo, J.H., Taneja, R., Edelson, B.T., Lee, Y.J., and Choi, J.M. (2022). Bystander memory-phenotype conventional CD4+ T cells exacerbating autoimmune neuroinflammation. BioRxiv, https://doi.org/10.1101/2022.06.17.496529 
  12. Cojocaru, M., Cojocaru, I.M., and Silosi, I. (2010). Multiple autoimmune syndrome. Maedica (Bucur.) 5, 132-134. 
  13. Constantinescu, C.S., Farooqi, N., O'Brien, K., and Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 164, 1079-1106.  https://doi.org/10.1111/j.1476-5381.2011.01302.x
  14. Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L., Gunderson, K.L., Steemers, F.J., Trapnell, C., and Shendure, J. (2015). Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910-914.  https://doi.org/10.1126/science.aab1601
  15. De Riva, A., Varley, M.C., Bluck, L.J., Cooke, A., Deery, M.J., and Busch, R. (2013). Accelerated turnover of MHC class II molecules in nonobese diabetic mice is developmentally and environmentally regulated in vivo and dispensable for autoimmunity. J. Immunol. 190, 5961-5971.  https://doi.org/10.4049/jimmunol.1300551
  16. Dominguez Conde, C., Xu, C., Jarvis, L.B., Rainbow, D.B., Wells, S.B., Gomes, T., Howlett, S.K., Suchanek, O., Polanski, K., King, H.W., et al. (2022). Crosst-issue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197. 
  17. Dominguez-Villar, M. and Hafler, D.A. (2018). Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665-673.  https://doi.org/10.1038/s41590-018-0120-4
  18. Edalat, S.G., Gerber, R., Houtman, M., Kuret, T., Izanc, N., Micheroli, R., Burki, K., Burja, B., Pauli, C., Rotar, Z., et al. (2022). A comprehensive single-cell atlas of freshly dissociated human synovium in inflammatory arthritis with an optimized dissociation protocol for prospective fresh synovial biopsy collection. BioRxiv, https://doi.org/10.1101/2022.06.01.493823 
  19. Eraslan, G., Drokhlyansky, E., Anand, S., Fiskin, E., Subramanian, A., Slyper, M., Wang, J., Van Wittenberghe, N., Rouhana, J.M., Waldman, J., et al. (2022). Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290. 
  20. Fasolino, M., Schwartz, G.W., Patil, A.R., Mongia, A., Golson, M.L., Wang, Y.J., Morgan, A., Liu, C., Schug, J., Liu, J., et al. (2022). Single-cell multiomics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat. Metab. 4, 284-299.  https://doi.org/10.1038/s42255-022-00531-x
  21. Garrido-Trigo, A., Corraliza, A.M., Veny, M., Dotti, I., Melon-Ardanaz, E., Rill, A., Crowell, H.L., Corbi, A., Gudino, V., Esteller, M., et al. (2022). Macrophage and neutrophil heterogeneity at single-cell spatial resolution in inflammatory bowel disease. BioRxiv, https://doi.org/10.1101/2022.11.28.518139 
  22. Guo, C., Liu, Q., Zong, D., Zhang, W., Zuo, Z., Yu, Q., Sha, Q., Zhu, L., Gao, X., Fang, J., et al. (2022). Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep. 41, 111606. 
  23. Hong, X., Meng, S., Tang, D., Wang, T., Ding, L., Yu, H., Li, H., Liu, D., Dai, Y., and Yang, M. (2021). Single-cell RNA sequencing reveals the expansion of cytotoxic CD4+ T lymphocytes and a landscape of immune cells in primary Sjogren's syndrome. Front. Immunol. 11, 594658. 
  24. Horeth, E., Oyelakin, A., Song, E.C., Che, M., Bard, J., Min, S., Kiripolsky, J., Kramer, J.M., Sinha, S., and Romano, R.A. (2021). Transcriptomic and single-cell analysis reveals regulatory networks and cellular heterogeneity in mouse primary Sjogren's syndrome salivary glands. Front. Immunol. 12, 729040. 
  25. Hou, X., Hong, X., Ou, M., Meng, S., Wang, T., Liao, S., He, J., Yu, H., Liu, L., Yin, L., et al. (2022). Analysis of gene expression and TCR/B cell receptor profiling of immune cells in primary Sjogren's syndrome by single-cell sequencing. J. Immunol. 209, 238-249.  https://doi.org/10.4049/jimmunol.2100803
  26. Hu, B., Guo, H., Zhou, P., and Shi, Z.L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141-154.  https://doi.org/10.1038/s41579-020-00459-7
  27. Jaeger, N., Gamini, R., Cella, M., Schettini, J.L., Bugatti, M., Zhao, S., Rosadini, C.V., Esaulova, E., Di Luccia, B., Kinnett, B., et al. (2021). Single-cell analyses of Crohn's disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat. Commun. 12, 1921. 
  28. Jeon, Y.H. and Choi, Y.S. (2016). Follicular helper T (Tfh) cells in autoimmune diseases and allograft rejection. Immune Netw. 16, 219-232.  https://doi.org/10.4110/in.2016.16.4.219
  29. Jeong, H., Bae, E.K., Kim, H., Eun, Y.H., Kim, I.Y., Kim, H., Lee, J., Jeon, C.H., Koh, E.M., and Cha, H.S. (2017). Estrogen attenuates the spondyloarthritis manifestations of the SKG arthritis model. Arthritis Res. Ther. 19, 198. 
  30. Katsarou, A., Gudbjornsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B.J., Jacobsen, L.M., Schatz, D.A., and Lernmark, A. (2017). Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 3, 17016. 
  31. Kaufmann, M., Evans, H., Schaupp, A.L., Engler, J.B., Kaur, G., Willing, A., Kursawe, N., Schubert, C., Attfield, K.E., Fugger, L., et al. (2021). Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. Med (N. Y.) 2, 296-312.e8.  https://doi.org/10.1016/j.medj.2021.01.006
  32. Kaul, A., Gordon, C., Crow, M.K., Touma, Z., Urowitz, M.B., van Vollenhoven, R., Ruiz-Irastorza, G., and Hughes, G. (2016). Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2, 16039. 
  33. Kim, J., Lee, J., Kim, H.J., Kameyama, N., Nazarian, R., Der, E., Cohen, S., Guttman-Yassky, E., Putterman, C., and Krueger, J.G. (2021). Single-cell transcriptomics applied to emigrating cells from psoriasis elucidate pathogenic versus regulatory immune cell subsets. J. Allergy Clin. Immunol. 148, 1281-1292.  https://doi.org/10.1016/j.jaci.2021.04.021
  34. Korsunsky, I., Wei, K., Pohin, M., Kim, E.Y., Barone, F., Major, T., Taylor, E., Ravindran, R., Kemble, S., Watts, G.F.M., et al. (2022). Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med (N. Y.) 3, 481-518.e14.  https://doi.org/10.1016/j.medj.2022.05.002
  35. Kramer, K.J., Wilfong, E.M., Voss, K., Barone, S.M., Shiakolas, A.R., Raju, N., Roe, C.E., Suryadevara, N., Walker, L.M., Wall, S.C., et al. (2022). Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat. Commun. 13, 3466. 
  36. Krienke, C., Kolb, L., Diken, E., Streuber, M., Kirchhoff, S., Bukur, T., Akilli-Ozturk, O., Kranz, L.M., Berger, H., Petschenka, J., et al. (2021). A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145-153.  https://doi.org/10.1126/science.aay3638
  37. Lee, J.S., Park, S., Jeong, H.W., Ahn, J.Y., Choi, S.J., Lee, H., Choi, B., Nam, S.K., Sa, M., Kwon, J.S., et al. (2020). Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5, eabd1554. 
  38. Liu, W., Jia, J., Dai, Y., Chen, W., Pei, G., Yan, Q., and Zhao, Z. (2022a). Delineating COVID-19 immunological features using single-cell RNA sequencing. Innovation (Camb.) 3, 100289. 
  39. Liu, Y., Wang, H., Taylor, M., Cook, C., Martinez-Berdeja, A., North, J.P., Harirchian, P., Hailer, A.A., Zhao, Z., Ghadially, R., et al. (2022b). Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci. Immunol. 7, eabl9165. 
  40. Lu, H.C., Kim, S., Steelman, A.J., Tracy, K., Zhou, B., Michaud, D., Hillhouse, A.E., Konganti, K., and Li, J. (2020). STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc. Natl. Acad. Sci. U. S. A. 117, 5430-5441.  https://doi.org/10.1073/pnas.1913997117
  41. Mariette, X. and Criswell, L.A. (2018). Primary Sjogren's syndrome. N. Engl. J. Med. 378, 931-939.  https://doi.org/10.1056/NEJMcp1702514
  42. Martin, J.C., Chang, C., Boschetti, G., Ungaro, R., Giri, M., Grout, J.A., Gettler, K., Chuang, L.S., Nayar, S., Greenstein, A.J., et al. (2019). Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493-1508.e20.  https://doi.org/10.1016/j.cell.2019.08.008
  43. Mauro, D., Thomas, R., Guggino, G., Lories, R., Brown, M.A., and Ciccia, F. (2021). Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat. Rev. Rheumatol. 17, 387-404.  https://doi.org/10.1038/s41584-021-00625-y
  44. Melms, J.C., Biermann, J., Huang, H., Wang, Y., Nair, A., Tagore, S., Katsyv, I., Rendeiro, A.F., Amin, A.D., Schapiro, D., et al. (2021). A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114-119.  https://doi.org/10.1038/s41586-021-03569-1
  45. Minnoye, L., Marinov, G.K., Krausgruber, T., Pan, L., Marand, A.P., Secchia, S., Greenleaf, W.J., Furlong, E.E.M., Zhao, K., Schmitz, R.J., et al. (2021). Chromatin accessibility profiling methods. Nat. Rev. Methods Primers 1, 10. 
  46. Nakamizo, S., Dutertre, C.A., Khalilnezhad, A., Zhang, X.M., Lim, S., Lum, J., Koh, G., Foong, C., Yong, P.J.A., Tan, K.J., et al. (2021). Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J. Exp. Med. 218, e20202345. 
  47. Nathan, A., Asgari, S., Ishigaki, K., Valencia, C., Amariuta, T., Luo, Y., Beynor, J.I., Baglaenko, Y., Suliman, S., Price, A.L., et al. (2022). Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606, 120-128.  https://doi.org/10.1038/s41586-022-04713-1
  48. Nayar, S., Turner, J.D., Asam, S., Fennell, E., Pugh, M., Colfrancesco, S., Berardicurti, O., Smith, C.G., Flint, J., Teodosio, A., et al. (2022). A cellular and spatial map of salivary glands at single cell resolution reveals the functional basis of tertiary lymphoid structure formation in Sjogren's syndrome. BioRxiv, https://doi.org/10.1101/2022.11.03.514908 
  49. Nehar-Belaid, D., Hong, S., Marches, R., Chen, G., Bolisetty, M., Baisch, J., Walters, L., Punaro, M., Rossi, R.J., Chung, C.H., et al. (2020). Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094-1106.  https://doi.org/10.1038/s41590-020-0743-0
  50. Neurath, M.F. (2019). Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol. 20, 970-979.  https://doi.org/10.1038/s41590-019-0415-0
  51. Pai, J.A. and Satpathy, A.T. (2021). High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881-892.  https://doi.org/10.1038/s41592-021-01201-8
  52. Park, Y.S., Gauna, A.E., and Cha, S. (2015). Mouse models of primary Sjogren's syndrome. Curr. Pharm. Des. 21, 2350-2364.  https://doi.org/10.2174/1381612821666150316120024
  53. Perez, R.K., Gordon, M.G., Subramaniam, M., Kim, M.C., Hartoularos, G.C., Targ, S., Sun, Y., Ogorodnikov, A., Bueno, R., Lu, A., et al. (2022). Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970. 
  54. Perfetto, S.P., Chattopadhyay, P.K., and Roederer, M. (2004). Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648-655.  https://doi.org/10.1038/nri1416
  55. Piper, C., Hainstock, E., Yin-Yuan, C., Chen, Y., Khatun, A., Kasmani, M.Y., Evans, J., Miller, J.A., Gorski, J., Cui, W., et al. (2022). Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD. Blood Adv. 6, 2791-2804.  https://doi.org/10.1182/bloodadvances.2021006084
  56. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., et al. (2017). The human cell atlas. Elife 6, e27041. 
  57. Ren, X., Wen, W., Fan, X., Hou, W., Su, B., Cai, P., Li, J., Liu, Y., Tang, F., Zhang, F., et al. (2021). COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895-1913.e19.  https://doi.org/10.1016/j.cell.2021.01.053
  58. Ryu, H., Kim, J., Kim, D., Lee, J.E., and Chung, Y. (2019). Cellular and molecular links between autoimmunity and lipid metabolism. Mol. Cells 42, 747-754. 
  59. Sakaguchi, N., Takahashi, T., Hata, H., Nomura, T., Tagami, T., Yamazaki, S., Sakihama, T., Matsutani, T., Negishi, I., Nakatsuru, S., et al. (2003). Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454-460.  https://doi.org/10.1038/nature02119
  60. Schabitz, A., Hillig, C., Mubarak, M., Jargosch, M., Farnoud, A., Scala, E., Kurzen, N., Pilz, A.C., Bhalla, N., Thomas, J., et al. (2022). Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases. Nat. Commun. 13, 7729. 
  61. Schafflick, D., Xu, C.A., Hartlehnert, M., Cole, M., Schulte-Mecklenbeck, A., Lautwein, T., Wolbert, J., Heming, M., Meuth, S.G., Kuhlmann, T., et al. (2020). Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247. 
  62. Schatz, D.G. and Ji, Y. (2011). Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251-263.  https://doi.org/10.1038/nri2941
  63. Setliff, I., Shiakolas, A.R., Pilewski, K.A., Murji, A.A., Mapengo, R.E., Janowska, K., Richardson, S., Oosthuysen, C., Raju, N., Ronsard, L., et al. (2019). High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179, 1636-1646.e15.  https://doi.org/10.1016/j.cell.2019.11.003
  64. Shiomi, A., Usui, T., Ishikawa, Y., Shimizu, M., Murakami, K., and Mimori, T. (2014). GM-CSF but not IL-17 is critical for the development of severe interstitial lung disease in SKG mice. J. Immunol. 193, 849-859.  https://doi.org/10.4049/jimmunol.1303255
  65. Simone, D., Penkava, F., Ridley, A., Sansom, S., Al-Mossawi, M.H., and Bowness, P. (2021). Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Commun. Biol. 4, 1395. 
  66. Soskic, B., Cano-Gamez, E., Smyth, D.J., Ambridge, K., Ke, Z., Matte, J.C., Bossini-Castillo, L., Kaplanis, J., Ramirez-Navarro, L., Lorenc, A., et al. (2022). Immune disease risk variants regulate gene expression dynamics during CD4(+) T cell activation. Nat. Genet. 54, 817-826.  https://doi.org/10.1038/s41588-022-01066-3
  67. Stephenson, E., Reynolds, G., Botting, R.A., Calero-Nieto, F.J., Morgan, M.D., Tuong, Z.K., Bach, K., Sungnak, W., Worlock, K.B., Yoshida, M., et al. (2021). Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904-916.  https://doi.org/10.1038/s41591-021-01329-2
  68. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K., Swerdlow, H., Satija, R., and Smibert, P. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865-868.  https://doi.org/10.1038/nmeth.4380
  69. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21.  https://doi.org/10.1016/j.cell.2019.05.031
  70. Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and processing, Library preparation and sequencing, Computational data analysis, Cell type annotation, Writing group, Supplemental text writing group, and Principal investigators (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367-372.  https://doi.org/10.1038/s41586-018-0590-4
  71. Tabula Sapiens Consortium*, Jones, R.C., Karkanias, J., Krasnow, M.A., Pisco, A.O., Quake, S.R., Salzman, J., Yosef, N., Bulthaup, B., Brown, P., et al. (2022). The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896. 
  72. Thakore, P.I., Schnell, A., Zhao, M., Huang, L., Hou, Y., Christian, E., Zaghouani, S., Wang, C., Singh, V., Ma, S., et al. (2022). The chromatin landscape of Th17 cells reveals mechanisms of diversification of regulatory and pro-inflammatory states. BioRxiv, https://doi.org/10.1101/2022.02.26.482041 
  73. Turner, B.M. (2007). Defining an epigenetic code. Nat. Cell Biol. 9, 2-6.  https://doi.org/10.1038/ncb0107-2
  74. Unterman, A., Sumida, T.S., Nouri, N., Yan, X., Zhao, A.Y., Gasque, V., Schupp, J.C., Asashima, H., Liu, Y., Cosme, C., Jr., et al. (2022). Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nat. Commun. 13, 440. 
  75. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., and Nagata, S. (1992). Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314-317.  https://doi.org/10.1038/356314a0
  76. Wilk, A.J., Rustagi, A., Zhao, N.Q., Roque, J., Martinez-Colon, G.J., McKechnie, J.L., Ivison, G.T., Ranganath, T., Vergara, R., Hollis, T., et al. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070-1076.  https://doi.org/10.1038/s41591-020-0944-y
  77. Wu, X., Liu, Y., Jin, S., Wang, M., Jiao, Y., Yang, B., Lu, X., Ji, X., Fei, Y., Yang, H., et al. (2021). Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat. Commun. 12, 4977. 
  78. Wu, Z. and McGoogan, J.M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) OUTBREAK in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239-1242.  https://doi.org/10.1001/jama.2020.2648
  79. Xu, H., Yu, H., Liu, L., Wu, H., Zhang, C., Cai, W., Hong, X., Liu, D., Tang, D., and Dai, Y. (2021). Integrative single-cell RNA-seq and ATAC-seq analysis of peripheral mononuclear cells in patients with ankylosing spondylitis. Front. Immunol. 12, 760381. 
  80. Yazar, S., Alquicira-Hernandez, J., Wing, K., Senabouth, A., Gordon, M.G., Andersen, S., Lu, Q., Rowson, A., Taylor, T.R.P., Clarke, L., et al. (2022). Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376, eabf3041. 
  81. You, M., Chen, L., Zhang, D., Zhao, P., Chen, Z., Qin, E.Q., Gao, Y., Davis, M.M., and Yang, P. (2021). Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nat. Cell Biol. 23, 620-630.  https://doi.org/10.1038/s41556-021-00690-1
  82. Zakharov, P.N., Hu, H., Wan, X., and Unanue, E.R. (2020). Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J. Exp. Med. 217, e20192362. 
  83. Zhang, F., Wei, K., Slowikowski, K., Fonseka, C.Y., Rao, D.A., Kelly, S., Goodman, S.M., Tabechian, D., Hughes, L.B., Salomon-Escoto, K., et al. (2019). Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928-942.  https://doi.org/10.1038/s41590-019-0378-1
  84. Zhang, J.Y., Wang, X.M., Xing, X., Xu, Z., Zhang, C., Song, J.W., Fan, X., Xia, P., Fu, J.L., Wang, S.Y., et al. (2020). Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. 21, 1107-1118.  https://doi.org/10.1038/s41590-020-0762-x
  85. Zhao, X.N., You, Y., Cui, X.M., Gao, H.X., Wang, G.L., Zhang, S.B., Yao, L., Duan, L.J., Zhu, K.L., Wang, Y.L., et al. (2021). Single-cell immune profiling reveals distinct immune response in asymptomatic COVID-19 patients. Signal Transduct. Target. Ther. 6, 342. 
  86. Zheng, X., Dozmorov, M.G., Strohlein, C.E., Bastacky, S., and Sawalha, A.H. (2022). Ezh2 knockout in B cells impairs plasmablast differentiation and ameliorates lupus-like disease in MRL/lpr mice. BioRxiv, https://doi.org/10.1101/2022.07.21.500990