DOI QR코드

DOI QR Code

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea

황해와 동중국해에서의 유의파고와 파향의 시공간 변동성

  • Hye-Jin Woo (Department of Earth Science Education, Seoul National University) ;
  • Kyung-Ae Park (Department of Earth Science Education, Seoul National University) ;
  • Kwang-Young Jeong (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Do-Seong Byun (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Hyun-Ju Oh (Ocean Research Division, Korea Hydrographic and Oceanographic Administration)
  • 우혜진 (서울대학교 지구과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 정광영 (국립해양조사원 해양과학조사연구실) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 오현주 (국립해양조사원 해양과학조사연구실)
  • Received : 2023.02.09
  • Accepted : 2023.02.28
  • Published : 2023.02.28

Abstract

Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

해양의 파랑은 지구온난화 및 기후변화의 중요한 지표 중 하나로 인식되고 있다. 기후변화와 동아시아 몬순의 영향을 직접적으로 받는 황해 및 동중국해역에서의 유의파고 및 파향의 시공간 변동성 연구가 필요하다. 본 연구에서는 유럽중기예보센터(European Centre for Medium-Range Weather Forecasts; ECMWF)에서 제공하고 있는 5세대 모델 재분석장 (ECMWF Reanalysis 5, ERA5) 자료를 활용하여 황해 및 동중국해역에서의 유의파고와 파향의 공간분포와 계절 및 경년변동을 포함하는 시공간 변동성을 분석하였다. 모델 재분석자료를 활용한 유의파고와 파향의 변동성 분석에 앞서 이어도 해양과학기지 관측 자료와의 비교를 통하여 정확도를 검증하였다. 평균 유의파고는 0.3-1.6 m의 범위를 보였으며 북쪽에 비해 남쪽이 높고 연안에 비해 황해 중심부에서 높은 공간분포 특성을 보였다. 유의파고의 표준편차 또한 평균과 유사한 양상을 나타내었다. 황해에서 유의파고와 파향은 뚜렷한 계절변동성을 보였다. 유의파고의 경우 전반적으로 겨울철에 가장 높았으며 늦봄 또는 초여름에 가장 낮았다. 파향은 계절풍의 영향으로 겨울철에는 주로 남쪽으로 전파되었으며 여름철에는 북쪽으로 전파되는 특성이 나타났다. 유의파고의 계절변동은 여름철 태풍 등의 영향으로 해마다 연 진폭의 큰 변화를 가진 강한 경년변동성을 보였다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2C2009464). 파랑 관측 자료는 해양수산부국립해양조사원 '이어도 해양과학기지 활용 황동중국해 중장기 해양환경 변화연구(I)'에서 제공되었습니다.

References

  1. Allan, J. and Komar, P., 2000, Are ocean wave heights increasing in the eastern North Pacific?. Eos, Transactions American Geophysical Union, 81(47), 561-567.  https://doi.org/10.1029/EO081i047p00561-01
  2. Ardhuin F., Stopa J.E., Chapron B., Collard F., Husson R., Jensen R.E., Johannessen J., Mouche A., Passaro M., Quartly G.D., Swail V., and Young I., 2019, Observing Sea States. Frontiers in Marine Science, 124. 
  3. Brown, G., 1977, The average impulse response of a rough surface and its applications. Institute of Electrical and Electronics Engineers Journal of Oceanic Engineering 2(1), 67-74.  https://doi.org/10.1109/JOE.1977.1145328
  4. Choi, B.H., Kim, K.O., and Eum. H.M., 2002, Digital bathymetric and topographic data for neighboring seas of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 14, 41-50. 
  5. Gower, J.F.R., 2002, Temperature, wind and wave climatologies, and trends from marine meteorological buoys in the northeast Pacific. Journal of Climate, 15(24), 3709-3718.  https://doi.org/10.1175/1520-0442(2002)015<3709:TWAWCA>2.0.CO;2
  6. Gulev, S.K. and Grigorieva, V., 2004, Last century changes in ocean wind wave height from global visual wave data. Geophysical Research Letters, 31(24). 
  7. Ha, K.J., Heo, K.Y., Lee, S.S., Yun, K.S., and Jhun, J.G., 2012, Variability in the East Asian monsoon: A review. Meteorological Applications, 19(2), 200-215.  https://doi.org/10.1002/met.1320
  8. Hayne, G., 1980, Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. Institute of Electrical and Electronics Engineers Transactions on Antennas and Propagation 28(5), 687-692.  https://doi.org/10.1109/TAP.1980.1142398
  9. Hemer, M.A., Fan, Y., Mori, N., Semedo, A., and Wang, X.L., 2013, Projected changes in wave climate from a multi-model ensemble. Nature climate change, 3(5), 471-476.  https://doi.org/10.1038/nclimate1791
  10. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, F., and Thepaut, J.N., 2020, The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.  https://doi.org/10.1002/qj.3803
  11. Hochet, A., Dodet, G., Ardhuin, F., Hemer, M., and Young, I., 2021, Sea State Decadal Variability in the North Atlantic: A Review. Climate, 9(12), 173. 
  12. Kwon, M., Jhun, J.G., Wang, B., An, S.I., and Kug, J.S., 2005, Decadal change in relationship between east Asian and WNP summer monsoons. Geophysical research letters, 32(16). 
  13. Lee, S.H. and Beardsley, R.C., 1999, Influence of stratification on residual tidal currents in the Yellow Sea. Journal of Geophysical Research: Oceans, 104(C7), 15679-15701.  https://doi.org/10.1029/1999JC900108
  14. Lie, H.J., 1989, Tidal fronts in the southeastern Hwanghae (Yellow Sea). Continental Shelf Research, 9(6), 527-546.  https://doi.org/10.1016/0278-4343(89)90019-8
  15. Menendez, M., Mendez, F.J., Losada, I.J., and Graham, N.E., 2008, Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophysical Research Letters, 35(22). 
  16. Na, J.Y., Han, S.K., Seo, J.W., No, Y.G., and Kang, I.S., 1997, Empirical orthogonal function analysis of surface pressure, sea surface temperature and winds over the East Sea on the Korea (Japan Sea), Korean Journal of Fisheries and Aquatic Sciences, 30, 188-202. (in Korean) 
  17. Oderiz, I., Silva, R., Mortlock, T.R., Mori, N., Shimura, T., Webb, A., Padilla-Hernandez, R., and Villers, S., 2021, Natural variability and warming signals in global ocean wave climates. Geophysical Research Letters, 48(11), e2021GL093622. 
  18. Ruggiero, P., Komar, P.D., and Allan, J.C., 2010, Increasing wave heights and extreme value projections: The wave climate of the US Pacific Northwest. Coastal Engineering, 57(5), 539-552.  https://doi.org/10.1016/j.coastaleng.2009.12.005
  19. Semedo, A., Suselj, K., Rutgersson, A., and Sterl, A., 2011, A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5), 1461-1479.  https://doi.org/10.1175/2010JCLI3718.1
  20. Smith, J.M., Cialone, M.A., Wamsley, T.V., and McAlpin, T.O., 2010, Potential impact of sea level rise on coastal surges in southeast Louisiana. Ocean Engineering, 37(1), 37-47.  https://doi.org/10.1016/j.oceaneng.2009.07.008
  21. Steele, K.E., Teng, C.C., and Wang, D.W.C., 1992, Wave direction measurements using pitch-roll buoys. Ocean Engineering, 19(4), 349-375.  https://doi.org/10.1016/0029-8018(92)90035-3
  22. Takbash, A. and Young, I.R., 2020, Long-term and seasonal trends in global wave height extremes derived from era-5 reanalysis data. Journal of Marine Science and Engineering, 8(12), 1015. 
  23. Takbash, A., Young, I. R., and Breivik, O., 2019, Global wind speed and wave height extremes derived from long-duration satellite records. Journal of Climate, 32, 109-126. doi: 10.1175/JCLI-D-18-0520.1 
  24. Timmermans, B.W., Gommenginger, C.P., Dodet, G., and Bidlot, J.R., 2020, Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophysical Research Letters, 47(9), e2019GL086880. 
  25. Timpe, G.L. and Van de Voorde, N., 1995, NOMAD buoys: an overview of forty years of use, OCEANS'95, MTS/IEEE, Challenges of Our Changing Global Environment, 309-315. 
  26. Tolman, H.L., Balasubramaniyan, B., Burroughs, L.D., Chalikov, D.V., Chao, Y.Y., Chen, H. S., and Gerald, V.M., 2002, Development and implementation of windgenerated ocean surface wave Modelsat NCEP. Weather and forecasting, 17(2), 311-333.  https://doi.org/10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2
  27. von Storch, H. and Zwiers, F.W., 1999, Statistical Analysis in Climate Research. Cambridge University Press, 494. 
  28. Wang, J. and Wang, Y., 2022, Evaluation of the ERA5 Significant Wave Height against NDBC Buoy Data from 1979 to 2019. Marine Geodesy, 45(2), 151-165.  https://doi.org/10.1080/01490419.2021.2011502
  29. Woo, H.J. and Park, K.A., 2017, Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 143, 1-14.  https://doi.org/10.1016/j.dsr2.2016.09.003
  30. Woo, H.J. and Park, K.A., 2021, Estimation of extreme significant wave height in the northwest pacific using satellite altimeter data focused on typhoons (1992- 2016). Remote Sensing, 13(6), 1063. 
  31. Young, I.R. and Ribal, A., 2019, Multiplatform evaluation of global trends in wind speed and wave height. Science, 364(6440), 548-552.  https://doi.org/10.1126/science.aav9527
  32. Young, I.R., Zieger, S., and Babanin, A.V., 2011. Global trends in wind speed and wave height. Science, 332(6028), 451-455. https://doi.org/10.1126/science.1197219