DOI QR코드

DOI QR Code

Improvement of the Efficacy Test Methods for Hand Sanitizers (Gel, Liquid, and Wipes): Emerging Trends from in vivo/ex vivo Test Strategies for Application in the Hand Microbiome

손소독제(겔형, 액제형, 와이프형)의 효능 평가법 개선: 평가 전략 연구 사례 및 손 균총 정보 활용 등 최근 동향

  • Yun O (Department of Food Regulatory Science, College of Science and Technology, Korea University) ;
  • Ji Seop Son (Department of Food and Biotechnology, College of Science and Technology, Korea University) ;
  • Han Sol Park (Department of Food Regulatory Science, College of Science and Technology, Korea University) ;
  • Young Hoon Lee (Department of Food and Biotechnology, College of Science and Technology, Korea University) ;
  • Jin Song Shin (Department of Food Regulatory Science, College of Science and Technology, Korea University) ;
  • Da som Park (Department of Food and Biotechnology, College of Science and Technology, Korea University) ;
  • Eun NamGung (Department of Food and Biotechnology, College of Science and Technology, Korea University) ;
  • Tae Jin Cho (Department of Food Regulatory Science, College of Science and Technology, Korea University)
  • 오윤 (고려대학교 식품규제과학과) ;
  • 송지섭 (고려대학교 식품생명공학과) ;
  • 박한솔 (고려대학교 식품규제과학과) ;
  • 이영훈 (고려대학교 식품생명공학과) ;
  • 신진송 (고려대학교 식품규제과학과) ;
  • 박다솜 (고려대학교 식품생명공학과) ;
  • 남궁은 (고려대학교 식품생명공학과) ;
  • 조태진 (고려대학교 식품규제과학과)
  • Received : 2023.02.03
  • Accepted : 2023.02.15
  • Published : 2023.02.28

Abstract

Skin sanitizers are effective in killing or removing pathogenic microbial contaminants from the skin of food handlers, and the progressive growth of consumer interest in personal hygiene tends to drive product diversification. This review covers the advances in the application of efficacy tests for hand sanitizers to suggest future perspectives to establish an assessment system that is optimized to each product type (gel, liquid, and wipes). Previous research on the in vivo simulative test of actual consumer use has adopted diverse experimental conditions regardless of the product type. This highlights the importance of establishing optimal test protocols specialized for the compositional characteristics of sanitizers through the comparative analysis of test methods. Although the operational conditions of the mechanical actions associated with wiping can affect the efficacy of the removal and/or the inactivation of target microorganisms from the skin's surface, currently there is a lack of standardized use patterns for the exposure of hand sanitizing wipes to skin. Thus, major determinants affecting the results from each step of the overall assessment procedures [pre-treatment - exposure of sanitizers - microbial recovery] should be identified to modify current protocols and develop novel test methods. The ex vivo test, designed to overcome the limited reproducibility of in vivo human trials, is also expected to replicate the environment for the contact of sanitizers targeting skin microorganisms. Recent progress in the area of skin microbiome research revealed distinct microbial characteristics and distribution patterns after the application of sanitizers on hands to establish the test methods with the perspectives on the antimicrobial effects at the community level. The future perspectives presented in this study on the improvement of efficacy test methods for hand sanitizers can also contribute to public health and food safety through the commercialization of effective sanitizer products.

피부를 대상으로 한 살균을 목적으로 하는 외용소독제의 경우 식품 취급자에 오염된 미생물의 사멸 또는 제거를 목적으로 활용될 수 있으며, 최근 개인위생에 대한 관심 증가에 따라 제품 소비 증가와 제품 다양화가 두드러지게 나타나고 있다. 살균 효능은 소독제의 핵심 품질 평가 요소로서 수행 절차 및 조건에 따라 상이한 결과가 나타날 수 있기 때문에 시험법의 효율성과 정확성을 높이기 위한 연구가 필요하다. 이에 본 총설논문에서는 주요 제형별(겔형, 액제형, 와이프형) 시험법 개발 현황을 파악하고 시험법별 특장점 분석 결과와 최근 관련 연구를 통하여 제시된 시사점을 기반으로 향후 효능 평가 체계의 발전 방향을 제시하고자 하였다. 인체 대상 시험법의 경우 시험 유형에 따라 소독제를 시험 대상 피부 표면에 처리하는 조건이 다양화되어 있어 시험법 간 동등성에 대한 평가를 통해 소독제 제품의 성분이나 특성에 따라 최적의 시험 유형을 파악하고 그에 대응되는 적절한 평가 체계 및 관련 규제의 표준화의 필요성을 시사하였다. 특히 와이프형 소독제의 경우 처리 방식이 미생물 제거 및 살균에 직접적으로 영향을 미침에도 불구하고 피부에 노출하는 손 대상 처리를 위한 사용 패턴의 표준화 사례가 부족 하였다. 한편 [전처리 - 소독제 노출 - 미생물 회수] 등 각 시험 절차별로 결과에 영향을 미치는 주요 결정 요인을 발굴하는 연구의 지속 수행을 통해 기존 시험법을 개선하고 신규 시험법을 개발하고자 하는 노력이 요구된다. 최근 활발하게 개발되고 있는 ex vivo 시험법은 인체 시험의 제한적인 연구 재현성과 같은 한계를 극복하면서도 인간 피부 환경을 구현하기 위한 기술의 적용을 통해 연구 결과의 신뢰도를 확보할 수 있을 것으로 판단된다. 한편 손 피부를 대상으로 한 균총 연구 등 소독제 처리 전후 미생물의 특성과 분포 분석 관련 연구가 최근 다수 보고되고 있어 이를 활용한 미생물 군집 단위의 소독제 효능 평가 시험법의 확립이 기대된다. 본 연구를 통해 제시된 소독제 효능 시험법의 현황 기반 발전 전략은 보다 효과적인 개인위생 관리 확립을 통해 손을 통해 교차 오염되는 미생물에 의한 감염성 질병 발생을 최소화하여 공중보건 및 식품 안전성 향상에 기여할 수 있다.

Keywords

References

  1. Mieth, L., Mayer, M.M., Hoffmann, A., Buchner, A., Bell, R., Do they really wash their hands? Prevalence estimates for personal hygiene behaviour during the COVID-19 pandemic based on indirect questions. BMC Public Health, 21, 1-8 (2021). https://doi.org/10.1186/s12889-020-10013-y
  2. Liao, M., Liu, H., Wang, X., Hu, X., Huang, Y., Liu, X., Brenan, K., Mecha, J., Nirmalan, M., Lu, J.R., A technical review of face mask wearing in preventing respiratory COVID-19 transmission. Curr. Opin. Colloid Interface Sci., 52, 101417 (2021).
  3. Dahmardehei, M., Rezaiyan, M.K., Safarnejad, F., Ahmadabadi, A., An unprecedented increase in burn injuries due to alcohol-based hand sanitizers during the COVID-19 outbreak. Med. J. Islam Repub. Iran., 35, 107 (2021).
  4. Emami, A., Javanmardi, F., Keshavarzi, A., Pirbonyeh, N., Hidden threat lurking behind the alcohol sanitizers in COVID-19 outbreak. Dermatol. Ther., 33, e13627 (2020).
  5. Daverey, A., Dutta, K.J., COVID-19: Eco-friendly hand hygiene for human and environmental safety. J. Environ. Chem. Eng., 9, 104754 (2021).
  6. Yang, X., Wang, D., Zhou, Q., Nie, F., Du, H., Pang, X., Fan, Y., Bai, T., Xu, Y., Antimicrobial susceptibility testing of Enterobacteriaceae: determination of disk content and Kirby-Bauer breakpoint for ceftazidime/avibactam. BMC Microbiol., 19, 240 (2019).
  7. Surwase, V.B., Savale, M.M., Jadhav, R.S., Kadam, A.B., Shinde, P.P., Polyherbal natural hand sanitizer formulation and evaluation. J. Univ. Shanghai Sci. Technol., 23, 932-939 (2021). https://doi.org/10.51201/JUSST/21/05360
  8. Rahmasari, D., Hendradi, E., Chasanah, U., Formulation and evaluation of hand sanitizer gel containing infused of binahong leaf (Anredera cordifolia) as antibacterial preparation. Farmasains. J. Farm. Il. Kes., 5, 23-30 (2020).
  9. Magaldi, S., Mata-Essayag, S., De Capriles, C.H., Perez, C., Colella, M.T., Olaizola, C., Ontiveros, Y., Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis., 8, 39-45 (2004). https://doi.org/10.1016/j.ijid.2003.03.002
  10. Manaye, G., Muleta, D., Henok, A., Asres, A., Mamo, Y., Feyissa, D., Ejeta, F., Niguse, W., Evaluation of the efficacy of alcohol-based hand sanitizers sold in Southwest Ethiopia. Infect. Drug Resist., 14, 547-554 (2021). https://doi.org/10.2147/IDR.S288852
  11. Surini, S., Amirtha, N.I., Lestari, D.C., Formulation and effectiveness of a hand sanitizer gel produced using salam bark extract. Int. J. App. Pharm., 10, 216-220 (2018). https://doi.org/10.22159/ijap.2018.v10s1.48
  12. Ichor, T., Aondoakaa, E.M., Ebah, E.E., Comparative studies on the antibacterial activity of alcohol-based hand sanitizers against bacteria isolates from the hands of undergraduate students of University of Agriculture, Makurdi. J. Clin. Case Rep., 8, 10001143 (2018).
  13. Sommatis, S., Capillo, M.C., Maccario, C., Rauso, R., D'Este, E., Herrera, M., Castiglioni, M., Mocchi, R., Zerbinati, N., Antimicrobial efficacy assessment and rheological investigation of two different hand sanitizers compared with the standard reference WHO formulation 1. Gels, 9, 108 (2023).
  14. Kohler, A.T., Rodloff, A.C., Labahn, M., Reinhardt, M., Truyen, U., Speck, S., Evaluation of disinfectant efficacy against multidrug-resistant bacteria: A comprehensive analysis of different methods. Am. J. Infect. Control, 47, 1181- 1187 (2019). https://doi.org/10.1016/j.ajic.2019.04.001
  15. EN 13727 Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of bactericidal activity in the medical area - Test method and requirements (phase 2, step 1). CEN, (2015).
  16. Agafonova, M.N., Kazakova, R.R., Lubina, A.P., Zeldi, M.I., Nikitina, E.V., Balakin, K.V., Shtyrlin, Y.G., Antibacterial activity profile of miramistin in in vitro and in vivo models. Microb. Pathog., 142, 104072 (2020).
  17. EN 13624 Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of fungicidal or yeasticidal activity in the medical area - Test method and requirements (phase 2, step 1). CEN, (2022).
  18. EN 14476 Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of virucidal activity in the medical area - Test method and requirements (phase 2/step 1). CEN, (2019).
  19. Herdt, B.L., Black, E.P., Zhou, S.S., Wilde, C.J., Inactivation of SARS-CoV-2 by 2 commercially available benzalkonium chloride-based hand sanitizers in comparison with an 80% ethanol-based hand sanitizer. Infect. Prev. Prac., 3, 100191 (2021).
  20. Larson, E.L., Cohen, B., Baxter, K.A., Analysis of alcoholbased hand sanitizer delivery systems: efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands. Am. J. Infect. Control, 40, 806-809 (2012). https://doi.org/10.1016/j.ajic.2011.10.016
  21. D'Antonio, N.N., Rihs, J.D., Stout, J.E., Yu, V.L., Revisiting the hand wipe versus gel rub debate: is a higher-ethanol content hand wipe more effective than an ethanol gel rub?. Am. J. Infect. Control, 38, 678-682 (2010). https://doi.org/10.1016/j.ajic.2010.07.002
  22. Suchomel, M., Steinmann, J., Kampf, G., Efficacies of the original and modified World Health Organization-recommended hand-rub formulations. J. Hosp. Infect., 106, 264-270 (2020). https://doi.org/10.1016/j.jhin.2020.08.006
  23. EN 1500 Chemical disinfectants and antiseptics. Hygienic handrub. Test method and requirements (phase 2/step 2). CEN, (2013).
  24. Escudero-Abarca, B., Goulter, R.M., Manuel, C.S., Leslie, R.A., Green, K., Arbogast, J.W., Jaykus, L.A., Comparative assessment of the efficacy of commercial hand sanitizers against human norovirus evaluated by an in vivo fingerpad method. Front. Microbiol., 13, 869087 (2022).
  25. ASTM E2011-21 Standard test method for evaluation of hygienic handwash and handrub formulations for virus-eliminating activity using the entire hand. ASTM International, (2021).
  26. ASTM E2276-10 Standard test method for determining the bacteria-eliminating effectiveness of hygienic handwash and handrub agents using the fingerpads of adults. ASTM International, (2019).
  27. ASTM E1838-17 Standard test method for determining the virus-eliminating effectiveness of hygienic handwash and handrub agents using the fingerpads of adults. ASTM International, (2017).
  28. ASTM E2613-14 Standard test method for determining fungus-eliminating effectiveness of hygienic handwash and handrub agents using fingerpads of adults. ASTM International, (2016).
  29. Butz, A.M., Laughon, B.E., Gullette, D.L., Larson, E.L., Alcohol-impregnated wipes as an alternative in hand hygiene. Am. J. Infect. Control, 18, 70-76 (1990). https://doi.org/10.1016/0196-6553(90)90084-6
  30. ASTM E2755-22 Standard test method for determining the bacteria-eliminating effectiveness of healthcare personnel hand rub formulations using hands of adults. ASTM International, (2022).
  31. ASTM E2897-12-Standard guide for evaluation of the effectiveness of hand hygiene topical antimicrobial products using ex vivo porcine skin. ASTM International, (2022).
  32. Wales, A.D., Gosling, R.J., Bare, H.L., Davies, R.H., Disinfectant testing for veterinary and agricultural applications: A review. Zoonoses Public Health, 68, 361-375 (2021). https://doi.org/10.1111/zph.12830
  33. De Silva, C.C., Israni, N., Zanwar, A., Jagtap, A., Leophairatana, P., Koberstein, J.T., Modak, S.M., "Smart" polymer enhances the efficacy of topical antimicrobial agents. Burns, 45, 1418-1429 (2019). https://doi.org/10.1016/j.burns.2019.04.013
  34. Nachman, M., Franklin, S., Artificial Skin Model simulating dry and moist in vivo human skin friction and deformation behaviour. Tribol. Int., 97, 431-439 (2016). https://doi.org/10.1016/j.triboint.2016.01.043
  35. Wang, M., Luo, Y., Wang, T., Wan, C., Pan, L., Pan, S., He, K., Neo, A., Chen, X., Artificial skin perception. Adv. Mater., 33, 2003014 (2020).
  36. Cho, T.J., Hwang, J.Y., Kim, H.W., Kim, Y.K., Kwon, J.I., Kim, Y.J., Lee, K.W., Kim, S.A., Rhee, M.S., Underestimated risks of infantile infectious disease from the caregiver's typical handling practices of infant formula. Sci. Rep., 9, 9799 (2019).
  37. Gao, C., Lu, C., Jian, Z., Zhang, T., Chen, Z., Zhu, Q., Tai, Z., Liu, Y., 3D bioprinting for fabricating artificial skin tissue. Colloids Surf. B. Biointerfaces, 208, 112041 (2021).
  38. Ekambaram, R., Dharmalingam, S., Fabrication and evaluation of electrospun biomimetic sulphonated PEEK nanofibrous scaffold for human skin cell proliferation and wound regeneration potential. Mater. Sci. Eng. C, 115, 111150 (2020).
  39. Kobayashi, R., Murai, R., Sato, Y., Nakae, M., Nirasawa, S., Asanuma, K., Kuronuma, K., Takahashi, S., Study of postopening stability of active ingredients in hand sanitizers. J. Infect. Chemother., 28, 1605-1609 (2022). https://doi.org/10.1016/j.jiac.2022.08.012
  40. Christie, S., Sidhu, B., The efficacy of alcohol-based hand sanitizers used in a series, modifying the ASTM E2755 method with a shorter hand sanitizer application time. BCIT Environ. Public Health J., (2014).
  41. Bondurant, S.W., Duley, C.M., Harbell, J.W., Demonstrating the persistent antibacterial efficacy of a hand sanitizer containing benzalkonium chloride on human skin at 1, 2, and 4 hours after application. Am. J. Infect. Control, 47, 928-932 (2019). https://doi.org/10.1016/j.ajic.2019.01.004
  42. Mihalache, O.A., Borda, D., Neagu, C., Teixeira, P., Langsrud, S., Nicolau, A.I., Efficacy of removing bacteria and organic dirt from hands - A study based on bioluminescence measurements for evaluation of hand hygiene when cooking. Int. J. Environ. Health Res., 18, 8828 (2021).
  43. Kaiser, N., Klein, D., Karanja, P., Greten, Z., Newman, J., Inactivation of chlorhexidine gluconate on skin by incompatible alcohol hand sanitizing gels. Am. J. Infect. Control, 37, 569-573 (2009). https://doi.org/10.1016/j.ajic.2008.12.008
  44. Cheeseman, K.E., Denyer, S.P., Hosein, I.K., Williams, G.J., Maillard, J.Y., Evaluation of the bactericidal efficacy of three different alcohol hand rubs against clinical isolates of Staphylococcus aureus using an ex vivo carrier test. J. Hosp. Infect., 77, 21-24 (2011). https://doi.org/10.1016/j.jhin.2010.06.025
  45. Zapka, C., Leff, J., Henley, J., Tittl, J., De Nardo, E., Butler, M., Griggs, R., Fierer, N., Edmonds-Wilson, S., Comparison of standard culture-based method to culture-independent method for evaluation of hygiene effects on the hand microbiome. mBio., 8, e00093-00017 (2017).
  46. Ramadhani, M.F., Nirwati, H., Danarti, R., Susilowati, R., Perspectives on hand hygiene practices in response to the current COVID-19 pandemic: Possible impacts on the homeostasis of cutaneous microbiome. Bail Med. J., 10, 600- 607 (2021). https://doi.org/10.15562/bmj.v10i2.2159
  47. Vandegrift, R., Bateman, A.C., Siemens, K.N., Nguyen, M., Wilson, H.E., Green, J.L., Van Den Wymelenberg, K.G., Hickey, R.J., Cleanliness in context: reconciling hygiene with a modern microbial perspective. Microbiome, 5, 76 (2017).
  48. Bjerre, R.D., Bandier, J., Skov, L., Engstrand, L., Johansen, J.D., The role of the skin microbiome in atopic dermatitis: a systematic review. Br. J. Dermatol., 177, 1272-1278 (2017). https://doi.org/10.1111/bjd.15390
  49. Rotter, M., Sattar, S., Dharan, S., Allegranzi, B., Mathai, E., Pittet, D., Methods to evaluate the microbicidal activities of hand-rub and hand-wash agents. J. Hosp. Infect., 73, 191- 199 (2009). https://doi.org/10.1016/j.jhin.2009.06.024
  50. Tamimi, A.H., Edmonds-Wilson, S.L., Gerba, C.P., Use of a hand sanitizing wipe for reducing risk of viral illness in the home. Food Environ. Virol., 7, 354-358 (2015). https://doi.org/10.1007/s12560-015-9204-6
  51. De Rose, D.U., Reposi, M.P., Amadio, P., Auriti, C., Dall'Oglio, I., Corsetti, T., Dotta, A., Salvatori, G., Use of disinfectant wipes to sanitize milk's containers of human milk bank during COVID-19 pandemic. J. Hum. Lact., 36, 547-549 (2020). https://doi.org/10.1177/0890334420924639
  52. Ogilvie, B.H., Solis-Leal, A., Lopez, J.B., Poole, B.D., Robison, R.A., Berges, B.K., Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J. Hosp. Infect., 108, 142-145 (2021). https://doi.org/10.1016/j.jhin.2020.11.023
  53. Gemein, S., Andrich, R., Christiansen, B., Decius, M., Exner, M., Hunsinger, B., Imenova, E., Kampf, G., Koburger-Janssen, T., Konrat, K., Martiny, H., Meckel, M., Mutters, N.T., Pitten, F.A., Schulz, S., Schwebke, I., Gebel, J., Efficacy of five 'sporicidal' surface disinfectants against Clostridioides difficile spores in suspension tests and 4-field tests. J. Hosp. Infect., 122, 140-147 (2022). https://doi.org/10.1016/j.jhin.2022.01.010
  54. Jacobshagen, A., Gemein, S., Exner, M., Gebel, J., Test methods for surface disinfection: comparison of the Wiperator ASTM standard E2967-15 and the 4-field test EN 16615. GMS Hyg. Infect. Control, 15, (2020).
  55. Gemein, S., Gebel, J., Christiansen, B., Martiny, H., Vossebein, L., Brill, F.H.H., Decius, M., Eggers, M., KoburgerJanssen, T., Meckel, M., Werner, S., Hunsinger, B., Selhorst, T., Kampf, G., Exner M., Interlaboratory reproducibility of a test method following 4-field test methodology to evaluate the susceptibility of Clostridium difficile spores. J. Hosp. Infect., 103, 78-84 (2019). https://doi.org/10.1016/j.jhin.2019.04.011
  56. Gemein, S., Gebel, J., Roques, C., Steinhauer, K., Practical considerations for infection prevention of near-patient surfaces: validation of an alternative polyvinyl chloride carrier in the 4-field test EN 16615:2015. J. Hosp. Infect., 103, e118-e119 (2019). https://doi.org/10.1016/j.jhin.2019.02.018
  57. Wesgate, R., Robertson, A., Barrell, M., Teska, P., Maillard, J.Y., Impact of test protocols and material binding on the efficacy of antimicrobial wipes. J. Hosp. Infect., 103, e25-e32 (2019). https://doi.org/10.1016/j.jhin.2018.09.016
  58. Filipe, H.A.L., Fiuza, S.M., Henriques, C.A., Antunes, F.E., Antiviral and antibacterial activity of hand sanitizer and surface disinfectant formulations. Int. J. Pharm., 609, 121139 (2021).
  59. Jing, J.L.J., Pei Yi, T., Bose, R.J.C., McCarthy, J.R., Tharmalingam, N., Madheswaran, T., Hand sanitizers: A review on formulation aspects, adverse effects, and regulations. Int. J. Environ. Res. Public Health, 17, 3326 (2020).
  60. Prajapati, P., Desai, H., Chandarana, C., Hand sanitizers as a preventive measure in COVID-19 pandemic, its characteristics, and harmful effects: a review. J. Egypt. Public Health Assoc., 97, 6 (2022).
  61. Chopin-Doroteo, M., Krotzsch, E., Soap or alcohol-based products? The effect of hand hygiene on skin characteristics during the COVID-19 pandemic. J. Cosmet. Dermatol., 22, 347-353 (2022). https://doi.org/10.1111/jocd.15523
  62. Zivich, P.N., Gancz, A.S., Aiello, A.E., Effect of hand hygiene on infectious diseases in the office workplace: A systematic review. Am. J. Infect. Control, 46, 448-455 (2018). https://doi.org/10.1016/j.ajic.2017.10.006
  63. Ettayebi, K., Salmen, W., Imai, K., Hagi, A., Neill, F.H., Atmar, R.L., Prasad, B.V.V., Estes, M.K., Antiviral activity of olanexidine-containing hand rub against human noroviruses. mBio, 13, e0284821 (2022).
  64. Fu, L., Le, T., Liu, Z., Wang, L., Guo, H., Yang, J., Chen, Q., Hu, J., Different efficacies of common disinfection methods against Candida auris and other Candida species. J. Infect. Public Health, 13, 730-736 (2020). https://doi.org/10.1016/j.jiph.2020.01.008
  65. Edmonds-Wilson, S.L., Nurinova, N.I., Zapka, C.A., Fierer, N., Wilson, M., Review of human hand microbiome research. J. Dermatol. Sci., 80, 3-12 (2015). https://doi.org/10.1016/j.jdermsci.2015.07.006
  66. Ripanda, A., Miraji, H., Sule, K., Nguruwe, S., Ngumba, J., Sahini M., Vuai, S.H., Evaluation of potentiality of traditional hygienic practices for the mitigation of the 2019-2020 Corona Pandemic. Public Health Nurs., 39, 867-875 (2022). https://doi.org/10.1111/phn.13054
  67. Skowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., KwiecinskaPirog, J., Walecka-Zacharska, E., Radtke, L., GospodarekKomkowska, E., Human skin microbiome: Impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms, 9, 543 (2021).
  68. Shaffer, M., Lozupone, C., Prevalence and source of fecal and oral bacteria on infant, child, and adult hands. mSystems, 3, e00192-17 (2018).
  69. Rosenthal, M., Aiello, A.E., Chenoweth, C., Goldberg, D., Larson, E., Gloor, G., Foxman, B., Impact of technical sources of variation on the hand microbiome dynamics of healthcare workers. PLoS One, 9, e88999 (2014).
  70. Mainali, K., Bewick, S., Vecchio-Pagan, B., Karig, D., Fagan, W.F., Detecting interaction networks in the human microbiome with conditional Granger causality. PLoS Comput. Biol., 15, e1007037 (2019).
  71. Fierer, N., Hamady, M., Lauber, C.L., Knight, R., The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. USA, 105, 17994-17999 (2008). https://doi.org/10.1073/pnas.0807920105
  72. Del Campo, R., Martinez-Garcia, L., Sanchez-Diaz, A.M., Baquero, F., Biology of hand-to-hand bacterial transmission. Microbiol. Spectr., 7, (2019).
  73. Kratzel, A., Todt, D., V'kovski, P., Steiner, S., Gultom, M., Thao, T.T.N., Ebert, N., Holwerda, M., Steinmann, J., Niemeyer, D., Dijkman, R., Kampf, G., Drosten, C., Steinmann, E., Thiel V., Pfaender, S., Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis., 26, 1592-1595 (2020). https://doi.org/10.3201/eid2607.200915
  74. Oughton, M.T., Loo, V.G., Dendukuri, N., Fenn, S., Libman, M.D., Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile. Infect. Cont. Hosp. Epidemiol., 30, 939-944 (2009). https://doi.org/10.1086/605322
  75. Jain, V.M., Karibasappa, G.N., Dodamani, A.S., Prashanth, V.K., Mali, G.V., Comparative assessment of antimicrobial efficacy of different hand sanitizers: An in vitro study. Dent. Res. J., 13, 424-431 (2016). https://doi.org/10.4103/1735-3327.192283
  76. Vuai, S.A.H., Sahini, M.G., Sule, K.S., Ripanda, A.S., Mwanga, H.M., A comparative in-vitro study on antimicrobial efficacy of on-market alcohol-based hand washing sanitizers towards combating microbes and its application in combating Covid-19 global outbreak. Heliyon, 8, e11689 (2022).
  77. Chojnacki, M., Dobrotka, C., Osborn, R., Johnson, W., Young, M., Meyer, B., Laskey, E., Wozniak, R.A.F., Dewhurst, S., Dunman, P.M., Evaluating the antimicrobial properties of commercial hand sanitizers. mSphere, 6, e00062-21 (2021).
  78. Selam, M.N., Habte, B.M., Marew, T., Bitew, M., Getachew, T., Getachew, S., Abate, A., Mitiku, M., Matsabisa, M., Birhanu, G., Evaluation of quality and antimicrobial efficacy of locally manufactured alcohol-based hand sanitizers marketed in Addis Ababa, Ethiopia in the era of COVID-19. Antimicrob. Resist. Infect. Control, 11, 126 (2022).
  79. Booq, R.Y., Alshehri, A.A., Almughem, F.A., Zaidan, N.M., Aburayan, W.S., Bakr, A.A., Kabli, S.H., Alshaya, H.A., Alsuabeyl, M.S., Alyamani, E.J., Tawfik, E.A., Formulation and evaluation of alcohol-free hand sanitizer gels to prevent the spread of infections during pandemics. Int. J. Environ. Health Res., 18, 6252 (2021).
  80. Babeluk, R., Jutz, S., Mertlitz, S., Matiasek, J., Klaus, C., Hand hygiene - evaluation of three disinfectant hand sanitizers in a community setting. PLoS One, 9, e111969 (2014).