Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2021R1F1A1054739). 또한, 본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2023-2018-0-01417).
References
- J. Wu et al., "Who are the phishers? phishing scam detection on ethereum via network embedding," IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol.52, No.2, pp.1156-1166, 2022. https://doi.org/10.1109/TSMC.2020.3016821
- S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," [Internet], https://bitcoin.org/bitcoin.pdf, 2008.
- V. Buterin, "A next-generation smart contract and decentralized application platform," White Paper, Vol.3, No.37, pp.1-36, 2014.
- M. Conti, E. S. Kumar, C. Lal, and S. Ruj, "A servey on security and privacy issues of bitcoin," IEEE Communications Serveys & Tutorials, Vol.20, No.4, pp.3416-3452, 2018. https://doi.org/10.1109/COMST.2018.2842460
- K. F. K. Low and E. Teo, "Legal risk of owning crytocurrencies," Handbook of Blockchain, Digital Finance, and Inclusion, Vol.1, London: Academic Press, 2008.
- M. Khonji, Y. Iraqi, and A. Jones, "Phishing detection: A literature survey," IEEE Communications Surveys & Tutorials, Vol.15, No.4, pp.2091-2121, 2013. https://doi.org/10.1109/SURV.2013.032213.00009
- L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, and Z. Zheng, "Phishing scams detection in ethereum transaction network," ACM Transactions on Internet Technology(TOIT), Vol.21, No.1, pp.1-16, 2020. https://doi.org/10.1145/3398071
- D. Lin, J. Wu, Q. Yuan, and Z. Zheng, "Modeling and understanding ethereum transaction records via a complex network approach," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.67, No.11, pp.2737-2741, 2020. https://doi.org/10.1109/TCSII.2020.2968376
- Y. Y. Cheong, K. T. Kim, and D. H. Im, "Ethereum phishing scam detection based on graph embedding," in Proceedings of the Annual Conference of Korea Information Processing Society Conference (KIPS) 2022, Vol.29, No.2, 2022.
- N. Abdelhamid, A. Ayesh, and F. Thabtah, "Phishing detection based associative classification data mining," Expert Systems with Applications, Vol.41, No.13, pp.5948-5959, 2014. https://doi.org/10.1016/j.eswa.2014.03.019
- T. Yu, X. Chen, Z. Xu, and J. Xu, "MP-GCN: A phishing nodes detection approach via graph convolution network for ethereum," Applied Sciences, Vol.12, No.14, pp.7294, 2022.
- P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance: A survey," Knowledge-Based Systems, Vol.151, pp.78-94, 2018. https://doi.org/10.1016/j.knosys.2018.03.022
- B. Perozzi, R. Al-Rfou, S. Skiena, "DeepWalk: Online learning of social representations," in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.701-710, 2014.
- A. Grover, J. Leskovec, "Node2vec: Scalable feature learning for networks," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.855-864, 2016.
- Z. H. Zhou and M. Li, "Tri-training: Exploting unlabeled data using three classifiers," IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.11, pp.1529-1541, 2005. https://doi.org/10.1109/TKDE.2005.186
- Y. He, P. Yang, and P. Cheng, "Semi-supervised internet water army detection based on graph embedding," Multimedia Tools and Applications, Vol.82, No.7, pp.9891-9912, 2023. https://doi.org/10.1007/s11042-022-13633-1