DOI QR코드

DOI QR Code

Perspective: Analysis of Conditions for High-efficiency/Eco-friendly Energy Production Devices for Smart Cities

스마트시티용 고효율/친환경 에너지생산장치의 조건 분석

  • Sang Wook Kang (Department of Chemistry and Energy Engineering, Sangmyung University) ;
  • Jeong Uk Kim (Department of Electrical Engineering, Sangmyung University)
  • 강상욱 (상명대학교 화학에너지공학) ;
  • 김정욱 (상명대학교 전기공학)
  • Received : 2023.02.13
  • Accepted : 2023.02.24
  • Published : 2023.02.28

Abstract

The purpose of this study is to analyze the utilization forms of hydrogen fuel cells, which are the core of building a smart city, and suggest ways to solve them. In the case of power plants to utilize hydrogen fuel cell, it was analyzed as the most promising form of use in the future due to the advantage of being free from intermittence problems. However, despite many advantages, local residents' opposition continues to emerge due to concerns about explosions and the problem of carbon dioxide generation in the case of certain hydrogen production methods, and it is analyzed that resolving them will be the main key to establishing the smart city. Finally, by analyzing the current hydrogen production method and identifying the problems facing it, the solution for the complete construction of the smart city was presented.

본 연구의 목적은 스마트시티 구축의 핵심인 수소연료전지의 활용형태를 분석하고 해결방안을 제시하는 것이다. 수소연료전지를 활용하는 발전소의 경우 간헐성 문제가 없다는 장점 때문에 향후 가장 유망한 사용 형태로 분석됐다. 다만 많은 장점에도 불구하고 폭발 우려와 특정 수소 생산방식의 경우 이산화탄소 발생 문제 등으로 지역주민들의 반발이 지속적으로 나타나고 있어 이를 해결하는 것이 스마트시티 구축의 주요 관건이 될 것으로 분석된다. 마지막으로 현재의 수소 생산방식을 분석하고 이에 따른 문제점을 파악하여 스마트시티의 완전한 구축을 위한 해결책을 제시하였다.

Keywords

Acknowledgement

본 연구는 2022년도 상명대학교 대학혁신지원사업 연구비를 지원받아 수행하였음

References

  1. A. A. A. A. Al-Rashed, J. Alsarraf, and A. A. Alnaqi, "A comparative investigation of syngas and biofuel power and hydrogen plant combining nanomaterial-supported solid oxide fuel cell with vanadium-chlorine thermochemical cycle", Fuel, 331, 125910 (2023).
  2. T. E. Kuleshov, A. G. Ivanova, A. S. Galushko, I. Yu Kruchinina, O. A. Shilova, O. R. Udalova, A. S. Zhestkov, G. G. Panova, and N. R. Gall, "Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell", Int. J. Hydrog. Energy, 47, 24297 (2022).
  3. H. S. Das, M. Salem, M. A. A. M. Zainuri, A. M. Dobi, S. Li, and M. H. Ullah, "A comprehensive review on power conditioning units and control techniques in fuel cell hybrid systems", Energy Rep., 8, 14236 (2022).
  4. E. Diaz, M. Epstein, M. Romero, and J. Gonzalez-Aguilar, "Performance assessment of concentrated solar power plants based on carbon and hydrogen fuel cells", Int. J. Hydrog. Energy, 43, 5852 (2018).
  5. K. M. Gitushi, M. L. Blaylock, and L. E. Klebanoff, "Hydrogen gas dispersion studies for hydrogen fuel cell vessels II: Fuel cell room releases and the influence of ventilation", Int. J. Hydrog. Energy, 47, 21492 (2022).
  6. J. Chen, H. He, S. Quan, Z. Zhang, and R. Han, "Adaptive energy management for fuel cell hybrid power system with power slope constraint and variable horizon speed prediction", Int. J. Hydrog. Energy, https://doi.org/10.1016/j.ijhydene.2023.01.160 (2023).
  7. T. Niknam and M. Zare, "Probabilistic hydrogen, thermal and electrical management of PEM-fuel cell power plants in distribution networks", Int. J. Hydrog. Energy, 37, 18243 (2012).
  8. Z. Chen, H. Huang, Q. Chen, X. Peng, and J. Feng, "Novel multidisciplinary design and multi-objective optimization of centrifugal compressor used for hydrogen fuel cells", Int. J. Hydrog. Energy, https://doi.org/10.1016/j.ijhydene.2022.11.312 (2023).
  9. X. Hou, H. Lan, Z. Zhao, J. Li, C. Hu, and Y. Li, "Effect of obstacle location on hydrogen dispersion in a hydrogen fuel cell bus with natural and mechanical ventilation", Process Saf. Environ. Prot., https://doi.org/10.1016/j.psep.2022.12.094 (2023).
  10. B. Barik, Y. Yun, A. Kumar, H. Bae, Y. Namgung, J.-Y. Park, and S.-J. Song, "Highly enhanced proton conductivity of single-step-functionalized graphene oxide/nafion electrolyte membrane towards improved hydrogen fuel cell performance", Int. J. Hydrog. Energy, https://doi.org/10.1016/j.ijhydene. 2022.12.137 (2023).
  11. L. Bartolucci, E. Cennamo, S. Cordiner, V. Mulone, F. Pasqualini, and M. A. Boot, "Digital twin of a hydrogen fuel cell hybrid electric vehicle: Effect of the control strategy on energy efficiency", Int. J. Hydrog. Energy, https://doi.org/10.1016/j.ijhydene.2022.11.283 (2022).
  12. U. Yilmaz and O. Turksoy, "Artificial intelligence based active and reactive power control method for single-phase grid connected hydrogen fuel cell systems", Int. J. Hydrog. Energy., 48, 7866 (2023).