DOI QR코드

DOI QR Code

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma (Department of Materials Science and Engineering, Korea University) ;
  • Jin Hyuk Cho (Department of Materials Science and Engineering, Korea University) ;
  • Kangwon Lee (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Soo Young Kim (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2022.10.06
  • 심사 : 2022.11.07
  • 발행 : 2023.02.27

초록

The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

키워드

과제정보

This research was supported by the NRF funded by the Korean government [grant number 2021R1A4A3027878, 2022M3H4A1A01012712].

참고문헌

  1. S. Chu and A. Majumdar, Nature, 488, 294 (2012).
  2. H. Li and H. Zhu, Sustainable Energy Fuels, 4, 996 (2020).
  3. R. P. Ye, J. Ding and W. Gong, Nat. Commun., 10, 5698 (2019).
  4. J. Fu, Mater. Today, 32, 222 (2020).
  5. S. Overa, B. H. Ko and Y. Zhao, Acc. Chem. Res., 55, 638 (2022).
  6. S. C. Peter, ACS Energy Lett., 3, 1557 (2018).
  7. J. J. Lv, M. Journy, W. Luc, W. Zhu and J. J. Zhu, Adv. Mater., 30, 1803111 (2018).
  8. L. D. Ramirez-Valencia, Catalysts, 11, 351 (2021). https://doi.org/10.3390/catal11030351
  9. A. D. Handoko, C. W. Ong, Y. Huang, Z. G. Lee, L. Lin and G. B. Panetti, J. Phys. Chem. C, 120, 20058 (2016).
  10. B. Wu and J. Chen, Catalysts, 12, 860 (2022).
  11. M. Li, H. Wang and P. C. Sherrell, Adv. Mater., 32, 2001848 (2020).
  12. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen and S. Yang, Adv. Sci., 5, 1700275 (2018).
  13. J. H. Cho and S. Y. Kim, Ceramist, 24, 67 (2021). https://doi.org/10.31613/ceramist.2021.24.1.05
  14. W. Luo, J. Zhang, M. Li and A. Zuttel, ACS Catal., 9, 3783 (2019).
  15. D. Scarpa and M. Sarno, Catalysts, 12, 275 (2022).
  16. D. Sun, X. Xu, Y. Qin and S. P. Jiang, ChemSusChem, 13, 39 (2020).
  17. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen and F. Jiao, Nat. Commun., 5, 3242 (2014).
  18. W. Zhu, R. Michalosky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 135, 16833 (2013).
  19. Y. Chen, C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 134, 19969 (2012).
  20. X. Chen, J. Liu, T. Yuan, Z. Zhang, C. Song, S. Yang, X. Gao, N. Wang and L. Cui, Energy Mater., 2, 200028 (2022).
  21. A. Zhang, M. Zhou, S. Liu, M. Chai and S. Jiang, Front. Catal., 1, 754167 (2021). https://doi.org/10.3389/fctls.2021.754167
  22. B. Qiao, Nat. Chem., 3, 634 (2011).
  23. L. Huang, W. Li, M. Zeng, G. He, P. R. Shearing, I. P. Parkin and D. J. L. Brett, Composites Part B, 220, 108986 (2021).
  24. H. He, H. H. Wang, J. Liu, X. Liu, W. Li and Y. Wang, Molecules, 26, 6501 (2021). https://doi.org/10.3390/molecules26216501
  25. X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu and T. Zhang, Acc. Chem. Res., 46, 1740 (2013). https://doi.org/10.1021/ar300361m
  26. C. Zhu, S. Fu, Q. Shi, D. Du and Y. Lin, Angew. Chem., Int. Ed., 56, 13944 (2017).
  27. Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang and Y. Li, Joule, 2, 1242 (2018).
  28. F. Chen, X. Jiang, L. Zhang, R. Lang and B. Qiao, Chin. J. Catal., 39, 893 (2018).
  29. H. Liu, Y. Zhu, J. Ma, Z. Zhang and W. Hu, Adv. Funct. Mater., 30, 1910534 (2020).
  30. F. Y. Gao, R. C. Bao, M. R. Gao and S. H. Yu, J. Mater. Chem. A, 8, 15458 (2020).
  31. S. Liang, L. Huang, Y. Gao, Q. Wang and B. Liu, Adv. Sci., 8, 2102886 (2021). https://doi.org/10.1002/advs.202102886
  32. J. Zhang, W. Cai, F. X. Hu, H. Yang and B. Liu, Chem. Sci., 12, 6800 (2021). https://doi.org/10.1039/D1SC01375K
  33. S. Anantharaj, P. E. Karthik and S. Noda, Angew. Chem., Int. Ed., 60, 23051 (2021). https://doi.org/10.1002/anie.202110352
  34. Y. Pei, H. Zhong and F. Jin, Energy Sci. Eng., 9, 1012 (2021).
  35. S. Wang, A. Lu and C. J. Zhong, Nano Convergence, 8, 4 (2021).
  36. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramilo and I. Chorkendorff, Chem. Rev., 119, 7610 (2019).
  37. R. Lin, J. Guo, X. Li, P. Patel and A. Seifitokaldani, Catalysts, 10, 473 (2020).
  38. J. Lin, S. Yan, C. Zhang, Q. Hu and Z. Cheng, Processes, 10, 826 (2022).
  39. Z. Sun, T. Ma, H. Tao, Q. Fan and B. Han, Chem, 3, 560 (2017).
  40. Q. He, J. H. Lee, D. Liu, Y. Liu, Z. Lin, Z. Xie, S. Hwang, S. Kattel, L. Song and J. G. Chen, Adv. Funct. Mater., 30, 2000407 (2020).
  41. H. Han, S. Jin, S. Park, M. H. Seo and W. B. Kim, Appl. Catal., B, 292 (2021).
  42. R. Sui, J. Pei, J. Fang, X. Zhang, Y. Zhang, F. Wei, W. Chen, Z. Hu, S. Hu, W. Zhu and Z. Zhuang, ACS Appl. Mater. Interfaces, 13, 17736 (2021). https://doi.org/10.1021/acsami.1c03638
  43. N. Zhang, X. Zhang, L. Tao, P. Jiang, C. Ye, R. Lin, Z. Huang, A. Li, D. Pang, H. Yan, Y. Wang, P. Xu, S. An, Q. Zhang, L. Liu, S. Du, X. Han, D. Wang and Y. Li, Angew. Chem., Int. Ed., 60, 6170
  44. X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu and Y. Xie, J. Am. Chem. Soc., 139, 14889 (2017).
  45. S. Wu, F. Yi, D. Ping, S. Huang, Y. Zhang, L. Han, S. Wang, H. Wang, X. Yang, D. Guo, G. Liu and S. Fang, Carbon, 196, 1 (2022).
  46. P. Lu, Y. Yang, J. Yao, M. Wang, S. Dipazir, M. Yuan, J. Zhang, X. Wang, Z. Xie and G. Zhang, Appl. Catal., B, 24, 113 (2019).
  47. T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu and H. Wang, Joule, 3, 265 (2019).
  48. F. Li, S. Hong, T. S. Wu, X. Li, J. Masa, Y. L. Soo and Z. Sun, ACS Appl. Energy Mater., 2, 8836 (2019).
  49. M. Zhang, T. S. Wu, S. Hong, Q. Fan, Y. L. Soo, J. Masa, J. Qiu and Z. Sun, ACS Sustainable Chem. Eng., 7, 15030 (2019). https://doi.org/10.1021/acssuschemeng.9b03502
  50. S. Li, M. Ceccato, X. Lu, S. Frank, N. Lock, A. Roldan, X.-M. Hu, T. Skrydstrup and K. Daasbjerg, J. Mater. Chem. A, 9, 1583 (2021). https://doi.org/10.1039/D0TA08433F
  51. L. Liu, S. Liu, H. Qi, H. Yang, Y. Huang, Z. Wei, L. Li, J. Xu and B. Liu, J. Mater. Chem. A, 8, 6190 (2018).
  52. Z. Ma, X. Zhang, D. Wu, X. Han, L. Zhang, H. Wang, F. Wu, Z. Gao and K. Jiang, J. Colloid Interface Sci., 570, 31 (2020).
  53. K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer and H. Wang, Energy Environ. Sci., 11, 893 (2018).
  54. F. Wang, Y. Liu, Z. Song, Z. Miao and J. Zhao, Catalysts, 11, 561 (2021). https://doi.org/10.3390/catal11050561
  55. Y. Lu, H. Wang, P. Yu, Y. Yuan, R. Shahbazian-Yassar, Y. Sheng, S. Wu, W. Tu, G. Liu, M. Kraft and R. Xu, Nano Energy, 77, 105 (2020).
  56. C. Zhao, X. Dai and T. Yao, J. Am. Chem. Soc., 139, 8078 (2017).
  57. F. Ismail, A. Abdellah, H. J. Lee, V. Sudheeshkumar, W. Alnoush and D. C. Higgins, ACS Appl. Energy Mater., 5, 430 (2022).
  58. C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang and X. Bao, Energy Environ. Sci., 11, 1204 (2018).
  59. Z. Ma, D. Wu, X. Han, H. Wang, L. Zhang, Z. Gao, F. Xu and K. Jiang, J. CO2 Util., 32, 251 (2019).
  60. F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang and Y. Li, J. Mater. Chem. A, 7, 26231 (2019).
  61. Y. Zhang, L. Jiao, W. Yang, C. Xie and H.-L. Jiang, Angew. Chem., Int. Ed., 60, 7607 (2021). https://doi.org/10.1002/anie.202016219
  62. Y.-N. Gong, L. Jiao, Y. Qian, C.-Y. Pan, L. Zheng, X. Cai, B. Liu, S.-H. Yu and H.-L. Jiang, Angew. Chem., Int. Ed., 59, 2705 (2020).
  63. X. Rong, H.-J. Wang, X.-L. Lu, R. Si and T.-B. Lu, Angew. Chem., Int. Ed., 59, 1961 (2020). https://doi.org/10.1002/anie.201912458
  64. C. Jia, S. Li, Y. Zhano, R. K. Hocking, W. Ren, X. Chen, Z. Su, W. Yang, Y. Wang, S. Zheng, F. Pan and C. Zhao, Adv. Funct. Mater., 31, 2107072 (2021). https://doi.org/10.1002/adfm.202107072
  65. X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang, L. Shuai, B. Yang, Z. Li, J. Chen, L. Lei, N. M. Adli, M. K. H. Leung, M. Qiu, G. Wu and Y. Hou, Angew. Chem., Int. Ed., 60, 4192 (2021). https://doi.org/10.1002/anie.202013427
  66. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen and Y. Li, J. Am. Chem. Soc., 140, 4218 (2018). https://doi.org/10.1021/jacs.8b00814
  67. H. Yang, Q. Lin, Y. Wu, G. Li, Q. Hu, X. Chai, X. Ren, Q. Zhang, J. Liu and C. He, Nano Energy, 70 (2020).
  68. X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu and Y. Li, Angew. Chem., Int. Ed., 57, 1944 (2018). https://doi.org/10.1002/anie.201712451
  69. W. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. R. Cuenya, S. Kaskel, J. Rossmeisl and P. Strasser, Nat. Commun., 8, 944 (2017).
  70. J. Gu, C.-S. Hsu, L. Bai, H. M. Chen and X. Hu, Science, 364, 1091 (2019).
  71. F. Pan, B. Li, E. Sarnello, Y. Fei, Y. Gang, X. Xiang, Z. Du, P. Zhang, G. Wang, H. T. Nguyen, T. Li, Y. H. Hu, H.-C. Zhou and Y. Li, ACS Nano, 14, 5506 (2020).
  72. J. Tuo, Y. Lin, Y. Zhu, H. Jiang, Y. Li, L. Cheng, R. Pang, J. Shen, L. Song and C. Li, Appl. Catal., B, 272., 118960 (2020).
  73. H. Chen, X. Guo, X. Kong, Y. Xing, Y. Liu, B. Yu, Q.-X. Li , Z. Geng, R. Si and J. Zeng, Green Chem., 22, 7529 (2022). https://doi.org/10.1039/D0GC02689A
  74. Y. Ye, F. Cai, H. Li, H. Wu, G. Wang, Y. Li, S. Miao, S. Xie, R. Si, J. Wang and X. Bao, Nano Energy, 38, 281 (2017). https://doi.org/10.1016/j.nanoen.2017.05.042
  75. S. Wu, X. Lv, D. Ping, G. Zhang, S. wang, H. Wang, X. Yang, D. Guo and S. Fang, Electrochim. Acta, 340, 135930 (2020).
  76. C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi, M. Ren, J. Sha, J. Zhong, K. Nie, A. S. Jailov, Z. Li, H. Li, B. I. Yakobson, Q. Wu, E. Ringe, H. Xu, P. M. Ajayan and J. M. Tour, Adv. Energy Mater., 8, 1703487 (2018).
  77. Y. Zhu, X. Li, X. Wang, K. Lv, G. Xiao, J. Feng, X. Jiang, M. Fang and Y. Zhu, ChemistrySelect, 5, 1282 (2020).
  78. H. Zhang, J. Li, S. Xi, Y. Du, X. Hai, J. Wang, H. Xu, G. Wu, J. Zhang, J. Lu and J. Wang, Angew. Chem., Int. Ed., 58, 14871 (2019).
  79. X. Li, S. Xi, L. Sun, S. Dou, Z. Huang, T. Su and X. Wang, Adv. Sci., 7, 2001545 (2020).
  80. W. Ni, Z. Liu, Y. Zhang, C. Ma, H. Deng, S. Zhang and S. Wang, Adv. Mater., 33, 2003238 (2021). https://doi.org/10.1002/adma.202003238
  81. P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei and Y. Li, Angew. Chem., Int. Ed., 55, 10800 (2016).
  82. F. Li, Y. Bu, G.-F. Han, H.-J. Noh, S.-J. Kim, I. Ahmad, Y. Lu, P. Zhang, H. Y. Jeong, Z. Fu, Q. Zhong and J.-B. Baek, Nat. Commun., 10, 2623 (2019).
  83. F. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu and W. Xu, Angew. Chem., Int. Ed., 57, 12303 (2018). https://doi.org/10.1002/anie.201805871
  84. S. Li, S. Zhao, X. Lu, M. Ceccato, X.-M. Hu, A. Roldan, J. Catalano, M. Liu, T. Skrydstrup and K. Daasbjerg, Angew. Chem., Int. Ed., 60, 22826 (2021). https://doi.org/10.1002/anie.202107550
  85. W. Ni, Y. Gao, Y. Lin, C. Ma, X. Guo, S. Wang and S. Zhang, ACS Catal., 11, 5212 (2021). https://doi.org/10.1021/acscatal.0c05514
  86. Y. Zhao, J. Liang, C. Wang, J. Ma and G. G. Wallace, Adv. Energy Mater., 8, 1702524 (2018).
  87. J. Guo, W. Zhang, L.-H. Zhang, D. Chen, J. Zhan, X. Wang, N. R. Shiju and F. Yu, Adv. Sci., 8, 2102884 (2021). https://doi.org/10.1002/advs.202102884
  88. F. Yang, X. Mao, M. Ma, C. Jiang, P. Zhang, J. Wang, Q. Deng, Z. Zeng and S. Deng, Carbon, 168, 528 (2020).
  89. E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji, X. Zheng, Y. Wang, L. Zheng C. Chen, D. Wang, J. Zhang and Y. Li, J. Am. Chem. Soc., 141, 16569 (2019).
  90. M. Jia, S. Hog, T.-S. Wu, X. Li, Y.-L. Soo and Z. Sun, Chem. Commun., 55, 12024 (2019).
  91. Y. Wang, B. J. Park, V. K. Paidi, R. Huang, Y. Lee, K.-J. Noh, K.-S. Lee and J. W. Han, ACS Energy Lett., 7, 640 (2022).
  92. W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv, K. Wang, F. Lin, H. Luo, J. Li, M. Tong, E. Wang and S. Guo, Adv. Mater., 33, 21025769 (2021).
  93. Y. Ying, X. Luo, J. Qiao and H. Huang, Adv. Funct. Mater., 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
  94. H. Cheng, X. Wu, M. Feng, X. Li, G. Lei, Z. Fan, D. Pan, F. Cui and G. He, ACS Catal., 11, 12673 (2021). https://doi.org/10.1021/acscatal.1c02319
  95. W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith and C. Zhao, Angew. Chem., Int. Ed., 58, 6972 (2019).
  96. T. Zhang, X. Han, H. Liu, M. Biset-Peiro, X. Zhang, P. Tan, P. Tang, B. Yang, L. Zheng, J. R. Morante and J. Arbiol, Energy Environ. Sci., 14, 4847 (2021).