DOI QR코드

DOI QR Code

Korean Seismic Station Site Effect Estimation Using Generalized Inversion Technique

일반 역산 기법을 활용한 한국 지표 관측소 부지 효과 평가

  • Jee, Hyun Woo (Department of Architecture Engineering, Hanyang University) ;
  • Han, Sang Whan (Department of Architectural Engineering, Hanyang University)
  • 지현우 (한양대학교 건축공학과) ;
  • 한상환 (한양대학교 건축공학과)
  • Received : 2022.12.02
  • Accepted : 2023.02.02
  • Published : 2023.03.01

Abstract

The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.

Keywords

Acknowledgement

본 연구는 교육부와 한국연구재단 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 지원으로 진행된 것입니다.

References

  1. Schulte SM, Mooney WD. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts. Geophysical Journal International. 2005;161(3):707-721. https://doi.org/10.1111/j.1365-246X.2005.02554.x
  2. Johnston AC. Seismic moment assessment of earthquakes in stable continental regions-I. Instrumental seismicity. Geophysical Journal International. 1996;124(2):381-414. https://doi.org/10.1111/j.1365-246X.1996.tb07028.x
  3. Calais E, Camelbeeck T, Stein S, Liu M, Craig TJ. A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters. 2016;43(20):10,621-10,637.
  4. Kim HS, Sun CG, Cho HI. Geospatial Assessment of the Post-Earthquake Hazard of the 2017 Pohang Earthquake Considering Seismic Site Effects. International Journal of Geo-Information. 2018;7(9):375.
  5. Kim K, Seo W, Han J, Kwon J, Kang SY, Ree J, Kim S, Liu K. The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network. Tectonophysics. 2020;774:228306.
  6. Boore DM. Prediction of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics. 2003;160:635-676. https://doi.org/10.1007/PL00012553
  7. Ameri G, Oth A, Pilz M, Bindi D, Parolai S, Luzi L, Mucciarelli M, Cultrera G. Separation of source and site effects by generalized inversion technique using the aftershock recordings of the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering. 2011;9:717-739. https://doi.org/10.1007/s10518-011-9248-4
  8. Nakamura Y. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research. 1989;30:25-33.
  9. Borcherdt RD. Effects of Local Geology on Ground Motion Near San Francisco Bay. Bulletin of the Seismological Society of America. 1970;60(1):29-61.
  10. Andrews DJ. Objective Determination of Source Parameters and Similarity of Earthquakes of Different Size. Geophysical Monographs Series. 1986;37:259-267. https://doi.org/10.1029/GM037p0259
  11. Castro RR, Anderson JG, Singh SK. Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone. Bulletin of the Seismological Society of America. 1990;80:1481-1503.
  12. Parolai S, Bindi D, Augliera P. Application of the Generalized Inversion Technique (GIT) to a Microzonation Study: Numerical Simulations and Comparison with Different Site-Estimation Techniques. Bulletin of the Seismological Society of America. 2000;90(2):286-297. https://doi.org/10.1785/0119990041
  13. Jee HW, Han SW. Regional Ground Motion Prediction Equation Developed for the Korean Peninsula Using Recorded and Simulated Ground Motions. Journal of Earthquake Engineering. 2022;26(10):5384-5406. https://doi.org/10.1080/13632469.2021.1871682
  14. Yefei R, Ruizhi W, Yamanaka H, Kashima Y. Site effects by generalized inversion technique using strong motion recordings of the 2008 Wenchuan earthquake. Earthquake Engineering and Engineering Vibration. 2013;12(2).
  15. Dutta U, Martirosyan A., Biswas N, Papageorgiou A, Combellick R. Estimation of S-Wave Site Response in Anchorage, Alaska, from Weak-Motion Data Using Generalized Inversion Method. Bulletin of the Seismological Society of America. 2001;91(2):335-346. https://doi.org/10.1785/0120000119
  16. Pacor F, Spallarossa D, Oth A, Luzi L, Puglia R, Cantore L, Mercuri A, D'Amico M, Bindi D. Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for stress-drop dependence on magnitude and depth. Geophysical Journal International. 2016;204(2):697-718. https://doi.org/10.1093/gji/ggv448
  17. Klin P, Laurenzano G, Priolo E. GITANES: A MATLAB Package for Estimation of Site Spectral Amplification with the Generalized Inversion Technique. Seismological Research Letters. 2018;89(1):182-190. https://doi.org/10.1785/0220170080
  18. Bindi D, Kotha SR. Spectral decomposition of the Engineering Strong Motion (ESM) flat file: regional attenuation, source scaling and Arias stress drop. Bulletin of Earthquake Engineering. 2020;18:2581-2606. https://doi.org/10.1007/s10518-020-00796-1
  19. Jee HW, Han SW. Development of the Ground Motion Simulation Model for the Korean Peninsula. Journal of the Architectural Institute of Korea. 2020;36(10):159-166. https://doi.org/10.5659/JAIK.2020.36.10.159
  20. Husid P. Gravity Effects on the Earthquake Response of Yielding Structures. PhD. thesis. California Institute of Technology. 1967;1-153.
  21. McCann MWJ, Shah HC. Determining Strong Motion Duration of Earthquakes. Bulletin of the Seismological Society of America. 1979;69(4):1253-1265.
  22. Yenier E, Atkinson GM. An Equivalent Point-Source Model for Stochastic Simulation of Earthquake Ground Motions in California. Bulletin of the Seismological Society of America. 2015;105(3):1435-1455. https://doi.org/10.1785/0120140254
  23. Papazafeiropoulos G, Plevris V. OpenSeismoMatlab: A New Open-source Software for Strong Ground Motion Data Processing. Heliyon. 2018;4(9):e00784.
  24. Boore DM, Watson-Lamprey J, Abrahamson NA. Orientation-Independent Measures of Ground Motion. Bulletin of the Seismological Society of America. 2006;96(4A):1502-1511. https://doi.org/10.1785/0120050209
  25. Oth A, Bindi D, Parolai S, Giacomo DD. Spectral analysis of K-NET and KIK-net data in Japan. Part II: on attenuation characteristics, source spectra, and site response of borehole and surface stations. Bulletin of the Seismological Society of America. 2011;101(2):667-687. https://doi.org/10.1785/0120100135
  26. Seyhan E, Stewart JP. Semi-Empirical Nonlinear Site Amplification from NGA-West2 Data and Simulations. Earthquake Spectra. 2014;30(3):1241-1256. https://doi.org/10.1193/063013EQS181M
  27. Zafarani H, Soghrat MR. Single-Station Sigma for the Iranian Strong Motion Stations. Pure and Applied Geophysics volume. 2017;174:4077-4099. https://doi.org/10.1007/s00024-017-1613-z