DOI QR코드

DOI QR Code

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technolog) ;
  • Kaiming Bi (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Haoran Zuo (Centre for Infrastructure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University)
  • Received : 2022.05.27
  • Accepted : 2023.02.06
  • Published : 2023.03.25

Abstract

Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.

Keywords

Acknowledgement

This research was supported financially by the National Natural Science Foundation of China (No. 52208452) and China Postdoctoral Science Foundation (No. 2022M710283), which are gratefully appreciated.

References

  1. Ali Sadeghian, M., Yang, J., Wang, X.E. and Wang, F. (2021), "Novel adaptive tuned viscous inertance damper (ATVID) with adjustable inertance and damping for structural vibration control", Structures, 29, 814-822. https://doi.org/10.1016/j.istruc.2020.11.050 
  2. Alujevic, N., Cakmak, D., Wolf, H. and Jokic, M. (2018), "Passive and active vibration isolation systems using inerter", J. Sound Vib., 418, 163-183. https://doi.org/10.1016/j.jsv.2017.12.031. 
  3. Asami, T., Nishihara, O. and Baz, A.M. (2002), "Analytical solutions to H and H2 optimization of dynamic vibration absorbers attached to damped linear systems", J. Vib. Acoust., 124(2), 284-295. https://doi.org/10.1115/1.1456458. 
  4. Berardengo, M., Cigada, A., Guanziroli, F. and Manzoni, S. (2015), "Modelling and control of an adaptive tuned mass damper based on shape memory alloys and eddy currents", J. Sound Vib., 349, 18-38. https://doi.org/10.1016/j.jsv.2015.03.036 
  5. Brzeski, P., Lazarek, M. and Perlikowski, P. (2017), "Experimental study of the novel tuned mass damper with inerter which enables changes of inertance", J. Sound Vib., 404, 47-57. https://doi.org/10.1016/j.jsv.2017.05.034 
  6. Chakrabarti, S.K. (1987), Hydrodynamics of offshore structures: WIT Press, Southampton, UK. 
  7. Cummins, W. (1962), "The impulse response function and ship motions", Schiffstechnik, 9, 101-109. 
  8. Det Norske Veritas (2011), Modelling and analysis of marine operations, Det Norske Veritas, Olso, Norway. 
  9. Faltinsen, O. (1993), Sea loads on ships and offshore structures: Cambridge University Press, Cambridge, UK. 
  10. Hu, Y., Wang, J., Chen, M.Z.Q., Li, Z. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct., 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063 
  11. Huang, H., Mosalam, K.M. and Chang, W.-S. (2020), "Adaptive tuned mass damper with shape memory alloy for seismic application", Eng. Struct., 223. https://doi.org/10.1016/j.engstruct.2020.111171 
  12. Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138 
  13. Javidialesaadi, A. and Wierschem, N.E. (2019), "An inerter-enhanced nonlinear energy sink", Mech. Syst. Signal Process., 129, 449-454. https://doi.org/10.1016/j.ymssp.2019.04.047 
  14. Kim, H.S. and Kang, J.W. (2012), "Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm", Eng. Struct., 41, 242-257. https://doi.org/10.1016/j.engstruct.2012.03.038 
  15. Lazar, I., Neild, S. and Wagg, D. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390 
  16. Li, B., Huang, Z., Low, Y.M. and Ou, J. (2013), "Experimental and numerical study of the effects of heave plate on the motion of a new deep draft multi-spar platform", J. Mar. Sci. Tech., 18(2), 229-246. https://doi.org/10.1007/s00773-012-0203-0 
  17. Liu, K. and Ou, J. (2016), "A novel tuned heave plate system for heave motion suppression and energy harvesting on semisubmersible platforms", Sci. China Technol. Sci., 59(6), 897-912. https://doi.org/10.1007/s11431-016-6055-9 
  18. Lu, Z., Zhang, J. and Wang, D. (2021), "Energy analysis of particle tuned mass damper systems with applications to MDOF structures under wind-induced excitation", J. Wind. Eng. Ind. Aerodyn., 218, 104766. https://doi.org/10.1016/j.jweia.2021.104766 
  19. Ma, R., Bi, K. and Hao, H. (2018), "Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)", Eng. Struct., 177, 357-373. https://doi.org/10.1016/j.engstruct.2018.09.085 
  20. Ma, R., Bi, K. and Hao, H. (2019), "A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea", Struct. Control Health Monitor., 26(7), e2368. https://doi.org/10.1002/stc.2368 
  21. Ma, R., Bi, K. and Hao, H. (2020), "Heave motion mitigation of semi-submersible platform using inerter-based vibration isolation system (IVIS)", Eng. Struct., 219, 110833. https://doi.org/10.1016/j.engstruct.2020.110833 
  22. Ma, R., Bi, K. and Hao, H. (2021a), "Inerter-based structural vibration control: A state-of-the-art review", Eng. Struct., 243, 112655. https://doi.org/10.1016/j.engstruct.2021.112655 
  23. Ma, R., Bi, K. and Hao, H. (2021b), "A novel rotational inertia damper for amplifying fluid resistance: Experiment and mechanical model", Mech. Syst. Signal Process., 149, 107313. https://doi.org/10.1016/j.ymssp.2020.107313 
  24. Ma, R., Bi, K. and Hao, H. (2021c), "Wave flume tests of a semisubmersible platform controlled by a novel rotational inertia damper", Ocean Eng., 238, 109718. https://doi.org/10.1016/j.oceaneng.2021.109718 
  25. Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilistic Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007 
  26. Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: recent developments", Smart Struct. Syst., Int. J., 13(2), 173-176. https://doi.org/10.12989/sss.2014.13.2.173 
  27. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355 
  28. Newman, J.N. and Landweber, L. (1978), Marine hydrodynamics, MIT Press, Cambridge, UK. 
  29. Perez, T. and Fossen, T.I. (2009), "A matlab toolbox for parametric identification of radiation-force models of ships and offshore structures", Model, Identif. Control, 30(1), 1-15. https://doi.org/10.4173/mic.2009.1.1 
  30. Petrini, F., Giaralis, A. and Wang, Z. (2020), "Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants' comfort serviceability performance and energy harvesting", Eng. Struct., 204, 109904. https://doi.org/10.1016/j.engstruct.2019.109904
  31. Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861 
  32. Rong, K. and Lu, Z. (2021), "Performance of a gas-spring tuned mass damper under seismic excitation", Struct. Eng. Mech., Int. J., 80(2), 157-168. https://doi.org/10.12989/sem.2021.80.2.157 
  33. Sarkar, S. and Fitzgerald, B. (2022), "Fluid inerter for optimal vibration control of floating offshore wind turbine towers", Eng. Struct., 266, 114558. https://doi.org/10.1016/j.engstruct.2022.114558 
  34. Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE Trans. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532 
  35. Song, J., Bi, K., Xu, K., Han, Q. and Du, X. (2021), "Seismic responses of adjacent bridge structures coupled by tuned inerter damper", Eng. Struct., 243. https://doi.org/10.1016/j.engstruct.2021.112654 
  36. Stewart, G.M. and Lackner, M.A. (2014), "The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads", Eng. Struct., 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045 
  37. Sun, T. and Zhang, Z. (2022), "Optimal control and performance evaluation of an inerter-based point absorber wave energy converter", Ocean Eng., 259, 111883. https://doi.org/10.1016/j.oceaneng.2022.111883 
  38. Sun, C., Nagarajaiah, S. and Dick, A. (2014), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation", Smart Struct. Syst., Int. J., 13(2), 319-341. https://doi.org/10.12989/sss.2014.13.2.319 
  39. Tao, L. and Cai, S. (2004), "Heave motion suppression of a Spar with a heave plate", Ocean Eng., 31(5-6), 669-692. https://doi.org/10.1016/j.oceaneng.2003.05.005 
  40. Wang, Y., Lynch, J.P. and Law, K.H. (2007), "A wireless structural health monitoring system with multithreaded sensing devices: design and validation", Struct. Infrastruct. Eng., 3(2), 103-120. https://doi.org/10.1080/15732470600590820 
  41. Wang, Z., Gao, H., Wang, H. and Chen, Z. (2018), "Development of stiffness-adjustable tuned mass dampers for frequency retuning", Adv. Struct. Eng., 22(2), 473-485. https://doi.org/10.1177/1369433218791356 
  42. Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(5). https://doi.org/10.1088/0964-1726/21/5/055011 
  43. Xu, T., Liang, M., Li, C. and Yang, S. (2015), "Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions", J. Sound Vib., 355, 66-85. https://doi.org/10.1016/j.jsv.2015.05.035 
  44. Xu, K., Bi, K., Ge, Y., Zhao, L., Han, Q. and Du, X. (2020), "Performance evaluation of inerter-based dampers for vortex- induced vibration control of long-span bridges: A comparative study", Struct. Control Health Monit., 27(6), e2529. https://doi.org/10.1002/stc.2529 
  45. Zhang, Chen, Z., Hua, X., Huang, Z. and Niu, H. (2020), "Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control", Mech. Syst. Signal Process., 145, 106879. https://doi.org/10.1016/j.ymssp.2020.106879 
  46. Zhao, Z., Zhang, R., Jiang, Y. and Pan, C. (2019), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171 
  47. Zhu, H., Li, Y., Shen, W. and Zhu, S. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal Process., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023