DOI QR코드

DOI QR Code

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira (Department of Civil Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus) ;
  • Dildar Ali Mangnejo (Department of Civil Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus) ;
  • Aneel Kumar (Department of Civil Engineering, Mehran University of Engineering and Technology) ;
  • Tauha Hussain Ali (Department of Civil Engineering, Mehran University of Engineering and Technology) ;
  • Syed Naveed Raza Shah (Department of Civil Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus)
  • 투고 : 2022.11.27
  • 심사 : 2023.01.29
  • 발행 : 2023.02.25

초록

Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

키워드

과제정보

The authors would like to acknowledge the financial support provided by Mehran University of Engineering & Technology, Jamshoro, Sindh and Pakistan.

참고문헌

  1. Atkinson, J.H., Richardson, D. and Stallebrass, S.E.. (1990), "Effect of recent stress history on the stiffness of overconsolidated soil", Geotechnique, 40(4), 531-540. https://doi.org/10.1680/geot.1990.40.4.531.
  2. Boone, S.J., Westland, J. and Nusink, R. (1999), "Comparative evaluation of building responses to an adjacent braced excavation, Can. Geotech. J., 36(2), 210-223. https://doi.org/10.1139/t98-100.
  3. Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/gae.2017.12.2.185.
  4. CEN (2001), Eurocode 7, part 1: Geotechnical design: General rules, Final Draft prEN 1997-1. Brussels, Belgium: European Committee for Standardization (CEN).
  5. Finno, R.J., Lawrence, S.A., Allawh, N.F. and Harahap, I.S. (1991), "Analysis of performance of pile groups adjacent to deep excavation", J. Geotech..Eng., 117(6), 934-955. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(934).
  6. Fang, J., Kong, G. and Yang, Q. (2022), "Group performance of energy piles under cyclic and variable thermal loading", J. Geotech. Geoenviron. Eng., 148(8), 04022060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002840.
  7. Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), "Pile response adjacent to braced excavation", J. Geotech. Geoenviron. Eng., 129(4), 383-386. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(383).
  8. Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
  9. Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. Cohesive-frictional Mater., 4(5), 461-486. https://doi.org/10.1002/(sici)10991484(199909)4:5%3C461::aid-cfm71%3E3.0.co;2-p.
  10. Hibbitt, D., Karlsson, B.I. and Sorensen, E.P. (2010), Abaqus user's manual, version 6.10.2. Hibbitt, Karlsson & Sorensen Inc;, Providence, RI, USA.
  11. Hong, Y., Ng, C.W.W., Liu, G.B. and Liu, T. (2015), "Three-dimensional deformation behaviour of a multi-propped excavation at a "greenfield" site at Shanghai soft clay", Tunn. Undergr. Sp. Tech., 45, 249-259. https://doi.org/10.1016/j.tust.2014.09.012.
  12. Hsiao, E.C., Schuster, M., Juang, C.H. and Kung, G.T. (2008), "Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment", J. Geotech. Geoenviron. Eng., 134(10), 1448-1458. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1448).
  13. Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351.
  14. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc Hungarian Arch. Eng., 355-8 [in Hungarian].
  15. Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48. https://doi.org/10.12989/gae.2019.18.1.041.
  16. Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Mangi, N. (2022), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169.
  17. Korff, M., Mair, R.J. and Van Tol, F.A.F. (2016), "Pile-soil interaction and settlement effects induced by deep excavations", J. Geotech. Geoenviron. Eng., 138(7), 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434.
  18. Liyanapathirana, D.S. and Nishanthan, R. (2016), "Influence of deep excavation induced ground movements on adjacent piles", Tunn. Undergr. Sp. Tech., 52, 168-181. https://doi.org/10.1016/j.tust.2015.11.019.
  19. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  20. Long, M. (2001), "Database for retaining wall and ground movements due to deep excavations", J. Geotech. Geoenviron. Eng., 127(3), 203-224. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(203).
  21. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  22. Mu, L., Huang, M., Roodi, G.H. and Shi, Z. (2021), "Allowable wall deflection of braced excavation adjacent to pile-supported buildings", Geomech. Eng., 26(2), 161-173. https://doi.org/10.12989/gae.2021.26.2.161.
  23. Maeda, K. and Miura, K. (1999), "Relative density dependency of mechanical properties of sands", Soils Found., 39(1), 69-79. https://doi.org/10.3208/sandf.39.69.
  24. Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-frictional Mater., 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
  25. Ng, C.W., Wei, J., Poulos, H. and Liu, H. (2017), "Effects of multipropped excavation on an adjacent floating pile", J. Geotech. Geoenviron. Eng., 143(7), 04017021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001696.
  26. Ng, C.W.W., Shakeel, M., Wei, J. and Lin, S. (2021), "Performance of existing piled raft and pile group due to adjacent multipropped excavation: 3D centrifuge and numerical modeling", J. Geotech. Geoenviron. Eng., 147(4), 04021012.
  27. Poulos, H.G. (2001), "Piled raft foundations: design and applications", Geotechnique, 51(2), 95-113. https://doi.org/10.1680/geot.2001.51.2.95.
  28. O'Brien, A.S. (2012), "Chapter 52 Foundation types and conceptual design principles", ICE manual of geotechnical engineering, 2, 733-764.
  29. Qian, J. Tong, Y. Mu, L. Lu, Q. and Zhao, H. (2020), "A displacement controlled method for evaluating ground settlement induced by excavation in clay", Geomech. Eng., 20(4), 275-285. https://doi.org/10.12989/gae.2020.20.4.275.
  30. Shi, J., Wei, J., Ng, C.W.W. and Lu, H. (2019), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216.
  31. Shi, J., Chen, Y., Lu, H., Ma, S. and Ng, C.W.W. (2022a), "Centrifuge modeling of the influence of joint stiffness on pipeline response to underneath tunnel excavation", Can. Geotech. J., (Online). https://doi.org/10.1139/cgj-2020-0360.
  32. Shi, J., Wei, J., Ng, C.W., Lu, H., Ma, S., Shi, C. and Li, P. (2022b), "Effects of construction sequence of double basement excavations on an existing floating pile", Tunn. Undergr. Sp. Tech., 119, 104230. https://doi-org/10.1016/j.tust.2021.104230.
  33. Skempton, A.W. and Macdonald, D.H. (1956), "The allowable settlement of building", Proc. Inst Civil Eng., 5(6), 727-768. https://doi.org/10.1680/ipeds.1956.12202
  34. Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
  35. Standards Australia (2002), "Structural design actions; Part 1 Permanent, imposed and other actions", AS1170.1, Sydney Australia: Standards Australia.
  36. Zhang, R., Zheng, J., Pu, H. and Zhang, L. (2011), "Analysis of excavation-induced responses of loaded pile foundations considering unloading effect", Tunn. Undergr. Sp. Tech., 26(2), 320-335. https://doi.org/10.1016/j.tust.2010.11.003.
  37. Zhang, L.M. and Ng, A.M.Y. (2005), "Probabilistic limiting tolerable displacements for serviceability limit state design of foundations", Geotechnique, 55(2), 151-161. https://doi.org/10.1680/geot.2005.55.2.151.