DOI QR코드

DOI QR Code

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Long-Ji Zhang (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Zhi-Xiang Zhan (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • 투고 : 2022.10.25
  • 심사 : 2023.01.29
  • 발행 : 2023.02.25

초록

Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

키워드

과제정보

The work in this paper was funded by the national key research and development program (Grant No. 2017YFC1500702) and by the Fundamental Research Funds for the Central Universities (2015XKMS016).

참고문헌

  1. Abdellaziz, M., Karray, M., Chekired, M., Delisle, M.C., Locat, P., Ledoux, C. and Mompin, R. (2021), "Shear modulus and hysteretic damping of sensitive eastern Canada clays", Can. Geotech. J., 58(8), 1118-1134. https://doi.org/10.1139/cgj-2020-0254.
  2. Cui, Z.D., Zhang, Z.L., Yuan, L., Zhan, Z.X. and Zhang, W.K. (2019), Design of Underground Structures, Springer Press, Singapore. https://doi.org/10.1007/978-981-13-7732-7.
  3. Dammala, P.K., Krishna, A.M. and Bhattacharya, S. et al. (2017), "Dynamic soil properties for seismic ground response studies in Northeastern India", Soil Dyn. Earthq. Eng., 100(2017), 357-370. https://doi.org/10.1016/j.soildyn.2017.06.003.
  4. Deviprasad B.S. and Dodagoudar, G.R. (2020), "Seismic response of bridge pier supported on rocking shallow foundation", Geomech. Eng., 21(1), 73-84. https://doi.org/10.12989/gae.2020.21.1.073.
  5. Fang, Y., Lv, Y.J. and Xu. D., Peng, Y. and Zhou, X. (2021), "Experimental study of the dynamic shear modulus ratio and damping ratio of the quaternary sedimentary soils in the offshore areas of the Yellow Sea", Geofluids., 2021, 8374741. https://doi.org/10.1155/2021/8374741.
  6. Gu, C., Gu, Z.Q. and Cai, Y.Q., Wang, J. and Ling, D. (2017), "Dynamic modulus characteristics of saturated clays under variable confining pressure", Can. Geotech. J., 54(5), 729-735. https://doi.org/10.1139/cgj-2016-0441.
  7. Gu, C., Wang, J. and Cai, Y.Q., Yang, Z.G. and Gao, Y.F. (2012), "Undrained cyclic triaxial behavior of saturated clays under variable confining pressure", Soil Dyn. Earthq. Eng., 40(2012), 118-128. https://doi.org/10.1016/j.soildyn.2012.03.011.
  8. Gu, R., Fang, Y., Jiang, Q., Li, B. and Feng, D. (2022), "Effect of the particle size on direct shear deformation of soil", Geomech. Eng., 28(2), 135-143. https://doi.org/10.12989/gae.2022.28.2.135.
  9. Guo, L., Liu, L., Jin, H. and Fang, Y. (2020), "Long term cyclic behavior of saturated soft clay under different drainage conditions", Soil Dyn. Earthq. Eng., 139(2020), 106362. https://doi.org/10.1016/j.soildyn.2020.106362.
  10. Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils design equations and curves", J. Soil Mech. Found., 98(7), 667-692. https://trid.trb.org/view/126413. https://doi.org/10.1061/JSFEAQ.0001760
  11. Hu, X., Zhang, Y. and Guo, L., Wang, J., Cai, Y., Fu, H. and Cai, Y. (2018), "Cyclic behavior of saturated soft clay under stress path with bidirectional shear stresses", Soil Dyn. Earthq. Eng., 104(2018), 319-328. https://doi.org/10.1016/j.soildyn.2017.10.016.
  12. Huang, J., Chen, J. and Ke, W., Zhong, Y., Lu, Y. and Yi, S. (2021), "Damping ratio evolution of saturated Ningbo clays under cyclic confining pressure", Soil Dyn. Earthq. Eng., 143(2021), 106581. https://doi.org/10.1016/j.soildyn.2021.106581.
  13. Huynh, V., Nguyen, T. and Nguyen, X. (2021), "Seismic analysis of soil-structure interaction: Experimentation and modeling", Geomech. Eng., 27(2), 115-121. https://doi.org/10.12989/gae.2021.27.2.115.
  14. Jiang, T. and Xing, H.L. (2007), "Simplified calculation method for influence of confining pressure on soil shear modulus and damping ratio", Chinese J. Rock Mech. Eng., 26(7), 1432-1437 (In Chinese). https://kns.cnki.net/kns8/defaultresult/index.
  15. Khanbabazadeh, H., Iyisan, R. and Ozaslan, B. (2022), "Seismic behavior of the shallow clayey basins subjected to obliquely incident wave", Geomech. Eng., 31(2), 183-195. https://doi.org/10.12989/gae.2022.31.2.183.
  16. Li, X.S. (1997), "Rotational shear effects on ground earthquake response", Soil Dyn. Earthq. Eng., 16(1997), 9-19. https://doi.org/10.1016/S0267-7261(96)00032-2.
  17. Li, Y.Y., Li, P. and Zhu, S. (2022), "The study on dynamic shear modulus and damping ratio of marine soils based on dynamic triaxial test", Mar. Georesour. Geotec., 40(4), 473-486. https://doi.org/10.1080/1064119X.2021.1908463.
  18. Lin, B., Zhang, F. and Feng, D.C. et al. (2018), "Dynamic shear modulus and damping ratio of thawed saturated clay under long-term cyclic loading", Cold Reg. Sci. Technol., 145(2018), 93-105. https://doi.org/10.1016/j.coldregions.2017.10.003.
  19. Mansour, M.F. (2018), "Constitutive behavior of Port-Said Clay under seismic and small strain static conditions", Ain Shams Eng. J., 9(4), 2983-2991. https://doi.org/10.1016/j.asej.2018.06.005.
  20. Martin, P.P. and Seed, H.B. (1982), "One dimensional dynamic ground response analysis", J. Geotech. Eng., 108(7), 935-954. https://doi.org/10.1061/AJGEB6.0001316.
  21. Park, D. (1998), "Evaluation of dynamic soil properties: strain amplitude effects on shear modulus and damping ratios", Ph.D. Dissertation, Cornell University, New York.
  22. Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found. Div., 97(9), 1249-1273. https://trid.trb.org/view/127844. https://doi.org/10.1061/JSFEAQ.0001662
  23. Tan, H.M., Fu, H.J., Mei, T.T. and Gao, Z.B. (2015), "Experimental study on the influence of buried depth on dynamic shear modulus and damping ratio of cohesive soil", Earthq. Eng. Eng. Vib., 35(6), 136-143 (In Chinese). https://kns.cnki.net/kns8/defaultresult/index.
  24. Wu, Z.J., Zhang, D. and Zhao, T., Ma, J. and Zhao, D. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor", Transportation Geotech., 21(2019), 100269. https://doi.org/ 10.1016/j.trgeo.2019.100269.
  25. Yamada, Y. and Ishihara, K. (1983), "Undrained deformation characteristics of sand in multi-directional shear", Soils Found., 23(1), 61-79. https://doi.org/10.3208/sandf1972.23.61.
  26. Yang, S., Kwak, D. and Kishida, T. (2020), "Development of seismic fragility curves for high speed railway system using earthquake case histories", Geomech. Eng., 21(2), 179-186. https://doi.org/10.12989/gae.2020.21.2.179.
  27. Zhang, Y., Zhao, K. and Chen, G.X. (2022), "Dynamic shear modulus and damping ratio characteristics of undisturbed marine soils in the Bohai Sea, China", Earthq. Eng. Eng. Vib., 21(2), 297-312. https://doi.org/10.1007/s11803-022-2093-4.
  28. Zhou, W., Chen, Y. and Ma, G. (2017), "A modified dynamic shear modulus model for rockfill materials under a wide range of shear strain amplitudes.", Soil Dyn. Earthq. Eng., 92(2017), 229-238. https://doi.org/10.1016/j.soildyn.2016.10.027.
  29. Zhou, Y., Li, M., Wen, K. and Tong, R. (2019), "Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading", Geomech. Eng,, 17(6), 507-513. https://doi.org/10.12989/gae.2019.17.6.507.
  30. Zhou, Z.W., Li, G.Y., Shen, M. and Wang, Q.Z. (2022), "Dynamic responses of frozen subgrade soil exposed to freeze-thaw cycles", Soil Dyn. Earthq. Eng., 152(2022), 107010. https://doi.org/10.1016/j.soildyn.2021.107010.
  31. Zulkuf, K., Ayfer, E. and Huseyin, C. (2021), "Characterization of elastic and shear moduli of adapazari soils by dynamic triaxial tests and soil-structure interaction with site properties", Soil Dyn. Earthq. Eng., 151(2021), 106966. https://doi.org/10.1016/j.soildyn.2021.106966.