Acknowledgement
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., Int. J., 74(1), 83-90. http://dx.doi.org/10.12989/sem.2020.74.1.083.
- Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B Eng., 39(1), 151-158. http://dx.doi.org/10.1016/j.compositesb.2007.02.026.
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech. Int. J., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
- Akbas, S.D. (2019), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos Struct., 35(6), 729-737. https://doi.org/10.12989/SCS.2020.35.6.729.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/SCS.2022.42.5.649.
- Akhavan, H., Hashemi Sh.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comput. Mater. Sci., 44(3), 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/SEM.2022.81.6.705.
- AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study" Comput. Concr., Int. J., 26(3), 285-292. http://dx.doi.org/10.12989/cac.2020.26.3.285.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2014), "Elastic buckling of steel columns under axial compression", American J. Civil Eng., 2(3), 102-108. https://doi.org/10.11648/j.ajce.20140203.17.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/ANR.2022.12.1.037.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
- Brush, D.O and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York, NY, USA.
- Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/SCS.2022.44.6.829.
- Choi, S-H., Heo, I., Kim, J.H., Jeong, H., Lee, J-Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concr., 30(1),75-84. https://doi.org/10.12989/cac.2022.30.1.075.
- Civalek, O. and Avcar, M. (2022), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 38(Suppl 1), 489-521.https://doi.org/10.1007/s00366-020-01168-8.
- Cuong-Le, T., Ferreira, A.J.M. and Abdel Wahab, M. (2019b), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin. Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P., Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B Condens. Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Lee, J. Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020a), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(2022), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Cuong-Le, T., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019a), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Compos. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.
- Die Winkler E. Lehre von der Elastizitat und Festigkeit (The Theory of Elasticity and Stiffness). Prague H Dominius 1867.
- Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concr., 29(3),127-144. https://doi.org/10.12989/cac.2022.29.3.127.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/SEM.2022.81.2.179.
- Duc, N.D. and Tung, H.V. (2011), "Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations", Compos. Struct., 93(11), 2874-2881. https://doi.org/10.1016/j.compstruct.2011.05.017.
- Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mech., 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6.
- Eltaher, M.A., Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
- Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029.
- Ghazzawi, S.M., and Abdelrahman, W. G. (2020), "Static analysis of thick functionally graded plates with different property distribution functions", Arab. J. Sci. Eng., 45(7), 5099-5108. https://doi.org/10.1007/s13369-020-04344-6.
- Hadji, L. and Avcar, M. (2021b), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
- Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hadji, L., and Avcar, M. (2021a), "Free vibration analysis of fg porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/JACM.2020.35328.2628.
- Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A, (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/ANR.2022.12.1.101.
- Hui-Shen S. (2000), "Nonlinear bending of simply supported rectangular Reissner-Mindlin plates under transverse and in-plane loads and resting on elastic foundations", Eng. Struct., 22(7), 847-856. https://doi.org/10.1016/s0141-0296(99)00044-9.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40, 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
- Katariya, P.V., and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/SCS.2020.34.2.279.
- Katariya, P.V., and Panda, S.K. (2019), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. with Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
- Khatir, S., Tiachacht, S., Cuong-Le, T, Quoc Bui, T. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator.", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Khatir, S., Tiachacht, S., Cuong-Le, T., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kolahchi R, Safari M, Esmailpour M. (2016), "Dynamic stability analysis of temperature dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
- Kou, M., Bi, J., Yuan, B. and Wang, Y. (2020), "Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions", Struct. Eng. Mech., Int. J., 75(3), 339-356. http://dx.doi.org/10.12989/sem.2020.75.3.339.
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/SEM.2022.82.4.477.
- Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two parameter foundation using Green's functions", Eng. Struct., 22(3), 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3.
- Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun.,7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X.
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/ANR.2022.13.1.047.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concr., 30(2), 151-164. https://doi.org/10.12989/CAC.2022.30.2.151.
- Mantari, J.L. and Granados, E.V. (2015a), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B: Eng., 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.
- Mantari, J.L. and Granados, E.V. (2015b), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin. Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Meyers, C.A. and Hyer, M.W. (1991), "Thermal buckling and postbuckling of symmetrically laminated composite plates", J. Therm. Stress., 14(4), 519-540. https://doi.org/10.1080/01495739108927083.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates," J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
- Nath, Y. and Shukla, K.K. (2001), "Non-Linear transient analysis of moderately thick laminated composite plates", J. Sound Vib., 247(3), 509-526. https://doi.org/10.1006/jsvi.2001.3752.
- Nemati, A.R. and Mahmoodabadi, M.J. (2020), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 90(5), 883-915. https://doi.org/10.1007/s00419-019-01646-6.
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. http://dx.doi.org/10.12989/anr.2020.8.1.013.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech. Int. J., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Panda, S.K., Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-90. https://doi.org/10.1007/s40819-015-0035-9.
- Pasternak, P.L. (1954). "On a new method of analysis of an elastic foundation by means of two foundation constants (in Russian)", USSR: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture. Moscow.
- Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concr., 29(4), 247-253. https://doi.org/10.12989/CAC.2022.29.4.247.
- Qian, L.F. and Batra, R.C. (2005), "Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin Method", Comput. Mech., 35(3), 214-226. https://doi.org/10.1007/s00466-004-0617-6.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M., Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8.
- Reddy, J.N. (2004), "Mechanics of laminated composite plates and shells: theory and analysis", 2nd ed. Boca Raton: CRC Press.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435.
- Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys.,23, 184-191. https://doi.org/10.1002/sapm1944231184.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/SCS.2022.43.5.603.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027 27.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech. 94(3-4), 195-220. doi:10.1007/bf01176650.
- Thai, H.T. and Kim, S.E. (2013), "Closed-form solution for buckling analysis of thick functionally graded plates on elastic foundation", Int. J. Mech. Sci., 75, 34-44. https://doi.org/10.1016/j.ijmecsci.2013.06.007.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concr., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
- Touratier, M. (1991), "An efficient standard plate theory", Int J Eng. Sci, 29, 901-916. https://doi.org/10.1016/0020-7225(91)90165-y.
- Tran, T.M. and Cuong-Le, T. (2022), "A nonlocal IGA numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (P-SFGM) nanoplate", Int. J. Struct. Stabil. Dyam., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930.
- Van Do, V., Chang, K.H., Lee, C.H (2019), "Post-buckling analysis of FGM plates under in-plane mechanical compressive loading by using a mesh-free approximation", Arch. Appl. Mech., 89, 1421-1446. https://doi.org/10.1007/s00419-019-01512-5.
- Vinh, P.V. (2021), "Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak's elastic foundations via a hybrid quasi-3D theory", Mech. Base. Design Struct. Mach., https://doi.org/10.1080/15397734.2021.1894948.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Woo, J., Meguid, S.A., Ong, L.S. (2006), "Nonlinear free vibration behavior of functionally graded plates", J. Sound. Vib.,289, 595-611. https://doi.org/10.1016/j.jsv.2005.02.031.
- Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stress., 36(9), 869-894. https://doi.org/10.1080/01495739.2013.770356.
- Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stress., 36(9), 869-894. https://doi.org/10.1080/01495739.2013.770356
- Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. Part B Eng., 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014.
- Yaylaci, E.U., Yaylaci, M., O lmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concr., Int.l J., 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., Int. J., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concr., 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech. Int. J., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., Int. J., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concr., 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E. U., O ner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021c), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
- Zenkour, A.M. (2016a), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Phys. E, 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003.
- Zenkour, A.M. (2016b), "Vibration analysis of a single-layered graphene sheet embedded in visco-Pasternak's medium using nonlocal elasticity theory", J. Vibroeng., 18, 2319-2330. http://dx.doi.org/10.12989/anr.2016.4.4.309
- Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.