DOI QR코드

DOI QR Code

A Computer Simulation Study on the Separation Process for Electronic Grade, Highly Pure Carbon Dioxide through a Cryogenic Distillation

심냉 증류를 통한 전자급 고순도 이산화탄소의 분리 공정에 대한 전산 모사 연구

  • ILSU PARK (Department of Chemical Engineering, Kongju National University) ;
  • HUNGMAN MOON (A-ONE Co., LTD.) ;
  • JUNGHO CHO (Department of Chemical Engineering, Kongju National University)
  • 박일수 (국립공주대학교 천안공과대학 화학공학부) ;
  • 문흥만 ((주)에이원) ;
  • 조정호 (국립공주대학교 천안공과대학 화학공학부)
  • Received : 2023.02.03
  • Accepted : 2023.02.23
  • Published : 2023.02.28

Abstract

In this study, a computer simulation work has been performed for the separation of electronic grade highly pure carbon dioxide more than 7 N purity through a cryogenic distillation process. For the cold utility as a cooling medium for a condenser of the cryogenic distillation column, propylene was utilized as a refrigerant in the vapor-recompression refrigeration cycle. Through this work, it was concluded that the cryogenic distillation column with two stage compression and refrigeration cycle were essential to obtain a highly-pure liquefied CO2.

Keywords

Acknowledgement

본 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-CCU3050 사업의 지원을 받아 수행된 연구임(No.2022M3J2A1063788).

References

  1. S. Valluri, V. Claremboux, and S. Kawatra, "Opportunities and challenges in CO2 utilization", Journal of Environmental Sciences, Vol. 113, 2022, pp. 322-344, doi: https://doi.org/10.1016/j.jes.2021.05.043. 
  2. Q. Zhu, "Developments on CO2-utilization technologies" , Clean Energy, Vol. 3, No. 2, 2019, pp. 85-100, doi: https://doi.org/10.1093/ce/zkz008. 
  3. Y. Le Moullec, T. Neveux, K. Makhloufi, D. Roizard, M. Kanniche, and E. Favre, "Development of a CO2 capture process based on ammonia solvent and a dedicated composite hollow fibre membrane contactor", Energy Procedia, Vol. 63, 2014, pp. 651-658, doi: https://doi.org/10.1016/j.egypro.2014.11.072. 
  4. R. Bouma, F. Vercauteren, P. van Os, E. Goetheer, D. Berstad, and R. Anantharaman, "Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production", Energy Procedia, Vol. 114, 2017, pp. 72-80, doi: https://doi.org/10.1016/j.egypro.2017.03.1149. 
  5. Z. Rui, J. B. James, A. Kasik, and Y. S. Lin, "Metal-organic framework membrane process for high purity CO2 production", AIChE Journal, Vol. 62, No. 11, 2016, pp. 3836-3841, doi: https://doi.org/10.1002/aic.15367. 
  6. J. C. L. Y. Fong, C. J. Anderson, G. Xiao, P. A. Webley, and A. F. A. Hoadley, "Multi-objective optimisation of a hybrid vacuum swing adsorption and low-temperature post-combustion CO2 capture", Journal of Cleaner Production, Vol. 111, Pt. A, 2016, pp. 193-203, doi: https://doi.org/10.1016/j.jclepro.2015.08.033. 
  7. S. Z. S. Al Ghafri, C. Revell, M. D. Lorenzo, G. Xiao, C. E. Buckley, E. F. May, and M. Johns, "Techno-economic and environmental assessment of LNG export for hydrogen production", International Journal of Hydrogen Energy, Vol. 48, No. 23, 2023, pp. 8343-8369, doi: https://doi.org/10.1016/j.ijhydene.2022.11.160. 
  8. Y. Xin, Y. Zhang, P. Xue, K. Wang, E. Adu, and P. Tontiwachwuthikul, "The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy", Energy, Vol. 236, 2021, pp. 121376, doi: https://doi.org/10.1016/j.energy.2021.121376. 
  9. J. M. Smith, H. C. Van Ness, M. M. Abbott, and M. T. Swihart, "Introduction to chemical engineering thermodynamics", 8th ed., McGraw Hill, USA, 2018, pp. 327-343. 
  10. D. Y. Peng and D. B. Robinson, "A new two-constant equation of state", Industrial & Engineering Chemistry Fundamentals, Vol. 15, No. 1, 1976, pp. 59-64, doi: https://doi.org/10.1021/i160057a011. 
  11. C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, "A cubic equation of state with a new alpha function and a new mixing rule", Fluid Phase Equilibria, Vol. 69, 1991, pp. 33-50, doi: https://doi.org/10.1016/03783812(91)90024-2.