Consideration for the development of room-temperature ambient-pressure superconductor (LK-99)

상온상압 초전도체(LK-99) 개발을 위한 고찰

  • Sukbae Lee (Quantum Energy Research Centre, Inc.) ;
  • Jihoon Kim (Quantum Energy Research Centre, Inc.) ;
  • Sungyeon Im (Quantum Energy Research Centre, Inc.) ;
  • SooMin An (Quantum Energy Research Centre, Inc.) ;
  • Young-Wan Kwon (KU-KIST Graduate School of Converging Science and Technology, Korea University) ;
  • Keun Ho Auh (Quantum Energy Research Centre, Inc.)
  • 이석배 ((주)퀀텀에너지연구소) ;
  • 김지훈 ((주)퀀텀에너지연구소) ;
  • 임성연 ((주)퀀텀에너지연구소) ;
  • 안수민 ((주)퀀텀에너지연구소) ;
  • 권영완 (고려대학교 KU-KIST 융합대학원) ;
  • 오근호 ((주)퀀텀에너지연구소)
  • Received : 2023.03.31
  • Accepted : 2023.04.18
  • Published : 2023.04.30


This paper examines the way of thinking and limitations of physicists regarding the phenomenon of superconductivity and outlines how room-temperature and ambient-pressure superconductors can be developed through the statistical thermodynamic background of the liquid state theory. In hypothesis, the number of electron states should be limited by confining them to a state close to one-Dimension. Simultaneously, the electron-electron interactions should be frequent enough for the electrons to have liquid-like properties. As an example of implementing the hypothesis, our team reports the development of room-temperature and ambient-pressure superconductivity of a material named LK-99 (superconducting compound name developed in the research), whose structure was revealed through numerous experiments with a clue found by chance. Moreover, we summarize the theoretical and experimental basis for the characteristics and discovery of the world's first superconducting material surpassing the critical temperature of 97℃ at atmospheric pressure.

이 논문에서는 기존의 초전도 현상을 바라보는 물리학자들의 생각의 흐름과 한계들을 살펴보고, 통계 열역학적 액체론의 관점에서 제시한 이론적 배경을 통해 상온 상압 초전도체가 개발될 수 있음을 약술하였다. 이것이 가능 할 방안은, 전자들이 돌아다닐 수 있는 상태수가 현저히 제한되는 1-Dimension에 가까운 전자 상태이어야 한다는 것과 그 상태에 있는 전자들이 액체적 특성이 나타날 수 있을 정도로 전자-전자 상호작용이 빈번한 상태이어야 한다는 것이다. 이러한 실행 예로서 우연한 기회에 실마리를 얻어 수많은 실험으로 구조를 밝혀낸 LK-99(본 연구에서 개발한 상온 상압 초전도체의 이름)의 개발 자료를 보고하며, 이에 세계 최초로 상압에서 임계온도가 97℃를 능가하는 초전도 물질의 특성과 발견에 대한 이론적, 실험적 근거를 요약하였다.



최동식 교수의 별세 이후 교수님의 유훈에 따라6년에 걸친 상온 상압 초전도체를 찾아내려는 연구 개발에 매진할 수 있도록 재정적 지원을 해 주신 기 세웅 회계사, 이병규 대표님((주)프로셀테라퓨틱스), 윤상억 회장님((주)화인), 그리고 함께 투자에 참여해 주신 많은 투자자 분들께 감사드립니다. 무엇보다도 함께 동고동락한 개성 강하고, 재능 있는 공동 연구자들과 최근 연구팀에 헌신적으로 어려움을 분담해 주고 있는 방 재규, 김 경철에게도 감사의 말씀을 전합니다. 본 연구는 주로 (주)퀀텀에너지연구소의 연구개발비로 진행되었고, 재원의 일부분은 2019년 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구(No. 2019R111A1A01059675)와 고려대학교의 승인(Korea University Grant)을 통해 지원을 받았습니다.


  1. H.K. Onnes, "Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures", Proceedings of the Section of Sciences 13 (1911) 1274. 
  2. K.H. Auh "A short note of superconductors", Journal of the Korean Crystal Growth and Crystal Technology 31(5) (2021)
  3. J.G. Bednorz and K.A. Muller, "Possible high Tc superconductivity in the Ba-La-Cu-O system". Z. Phys. B. 64(1) (1986) 189. 
  4. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano and H. Hosono, "Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs", Nature 453 (2008) 376. 
  5. P. Phillips, "Advanced solid state physics. perseus books", Phillips ed. Overseas Press (2008) p. 224. 
  6. M. Cross, "Fermi liquid theory: Principles", California Institute of Technology (2004, Caltech Statistical Physics Lecture: Physics 127, Third term Lecture 9 1-5. 
  7. P. Kapitza, "Viscosity of liquid helium below the λ-point", Nature 141 (1938) 3558. 
  8. J. Bardeen, L.N. Cooper and J.R. Schrieffer, "Microscopic theory of superconductivity", Physical Review 106 (1957) 162. 
  9. J. Bardeen, L.N. Cooper and J.R. Schrieffer, "Theory of superconductivity", Physical Review 108 (1957) 1175. 
  10. E. Maxwell, "Isotope effect in the superconductivity of mercury", Physical Review 78(4) (1950) 477. 
  11. H. Frohlich, "Theory of the superconducting state. I. The ground state at the absolute zero of temperature", Phys. Rev. 79 (1950) 845. 
  12. B.D. Josephson, "The discovery of tunnelling supercurrents", Rev. Mod. Phys. 46 (1974) 251. 
  13. F. London, "Superfluid", vol. 1 F. London ed. (Wiley and sons,1950) p. 152. 
  14. H.S. Deaver. Jr. and W.M. Fairbank, "Experimental evidence for quantized flux in superconducting cylinders", Phys. Rev. Lett. 7 (1961) 43. 
  15. R. Doll and M. Nubauer, "Experimental proof of magnetic flux quantization in a superconducting ring", Phys. Rev. Lett. 7 (1961) 51. 
  16. O. Yilmaz, M. Saglam and Z.Z. Aydin, "Solution of Dirac equation for an electron moving in a homogeneous magnetic field: Effect of magnetic flux quantization", New and Old Concepts in Physics 4 (2007) 141. 
  17. J.E. Jacak, "Magnetic flux quantum in 2D correlated states of multiparticle charged system", New J. Phys. 22 (2020) 093027. 
  18. A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, L. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz and M.I. Eremets, "Superconductivity at 250 K in lanthanum hydride under high pressures", Nature 569(7757) (2019) 528. 
  19. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov and S.I. Shylin, "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system", Nature 525 (2015) 73. 
  20. N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, S. Munasinghe, S.E. Dissanayake, K.V. Lawler, A. Salamat and R.P. Dias, "Evidence of near-ambient superconductivity in a N-doped lutetium hydride", Nature 615 (2023) 244. 
  21. N.W. Ashcroft, "Metallic hydrogen: A high-temperature superconductor?", Phys. Rev. Lett. 21 (1968) 1748. 
  22. H.T. Kim, "Room-temperature-superconducting Tc driven by electron correlation", Sci. Rep. 11(2021) 10329. 
  23. Y. Yanase, T. Jujo, T. Nomura, H. Ikeda, T. Hotta and K. Yamada, "Theory of superconductivity in strongly correlated electron systems", Physics Reports 387(1-4) (2003)
  24. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure", Physical Review Letters 58 (1987) 908. 
  25. A. Schilling, M. Cantoni, J.D. Guo and H.R. Ott, "Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system", Nature 363 (1993) 56. 
  26. I.M. Vishik, W.S. Lee, R.-H. He, M. Hashimoto, Z. Hussain, T.P. Devereaux and Z.-X. Shen, "ARPES studies of cuprate Fermiology: superconductivity, pseudogap and quasiparticle dynamics", New J. Phys. 12 (2010) 105008. 
  27. T. Yu, C.E. Matt, F. Bisti, X. Wang, T. Schmitt, J. Chang, H. Eisaki, D. Feng and V.N. Strocov, "The relevance of ARPES to high-Tc superconductivity in cuprates", npj Quantum Mater. 5 (2020) 46. 
  28. Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori and P. Jarillo-Herrero, "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices", Nature 556 (2018) 80. 
  29. Y. Bang, "Pairing mechanism of heavily electron doped FeSe systems: dynamical tuning of the pairing cutoff energy", New J. Phys. 18 (2016) 113054. 
  30. S.B. Lee, J.H. Jeon, W.S. Kim and T.S. Chair, "A new model approach for the near-critical point region: 1. Construction of the generalized van der waals equation of state", J. Phys. Chem. B 112(49) (2008) 15725. 
  31. W.S. Kim and S.B. Lee, "A corresponding state theory for the viscosity of liquids", Bull. Korean Chem. Soc. 29 (2008) 33. 
  32. H. Eyring and R.P. Marchi, "Significant liquid structures", J. Chem. Educ. 40(11) (1963) 562. 
  33. M.S. Jhon and H. Eyring, "Physical Chemistry, An Advanced Treatise Vol. X: Liquid State", D. Henderson Ed. (Academic Press, New York) (1971) p. 335. 
  34. J.O. Hirschfelder, "Henry Eyring, 1901-1982", Annual Review of Physical Chemistry 34 (1983) xi. 
  35. F. London, "The λ-phenomenon of liquid helium and the bose-einstein degeneracy", Nature 141 (1938) 643. 
  36. J.D. Van der Waals, "The equation of state for gases and liquids", Nobel Lectures, Physics 1901-1921 (Elsevier Publishing Company, Amsterdam, 1967) p. 254. 
  37. T.S. Chair, W.S. Kim, H.S. Pak and M.S. Jhon, "A calculation for the viscosity of fluids by using van der Waals equation of state", Korean J. Chem. Eng. 6 (1989) 121. 
  38. W.S. Kim, J.Y. Kim and T.S. Chair, "Viscosity of helium calculated by using the brake theory of viscosity", J. Korean Chem. Soc. 36 (1992) 376. 
  39. L. Levitov and G. Falkovich, "Electron viscosity, current vortices and negative nonlocal resistance in graphene", Nature Phys. 12 (2016) 672. 
  40. S.H. Park, M. Kim, T.S. Chair and W.S. Kim, "The dependence of the critical temperature on the dimensions of the electron motion", J. Korean Chem. Soc. 40 (1996) 401. 
  41. Y.W. Kwon, C.H. Lee, D.H. Choi and J.I. Jin, "Materials science of DNA", J. Mater. Chem. 19 (2009) 1353. 
  42. Quantum Energy Research Institute, patent registration number: Republic of Korea 10-2020-0092373, patent application number: 10-2021-0112104, patent application number: 10-2022-0106845. 
  43. Named LK-99 after the initials of the family name (Lee and Kim) of the two people who first discovered a substance with a critical temperature of over 320 K and continued research on it with the last two digits of the year of discovery (1999). 
  44. S.H. Hwang, K.K. Orr, C.K. Lee, C.M. Lee and D.W. Kim, "A study on color in apatite with the addition of transition element", J. Korean Chem. Soc. 23 (1986) 43. 
  45. A. Mourachkine, "Room-temperature superconductivity", 1st ed. A. Mourachkine Ed. (Cambridge International Science Publishing (CISP). Cambridge, 2006) p. 271. 
  46. Y. Zhang, Z. Xiao, T. Kamiya and H. Hosono, "Electron confinement in channel spaces for one-dimensional electride", J. Phys. Chem. Lett. 6 (2015) 4966.