DOI QR코드

DOI QR Code

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park (Department of Life Science, Chung-Ang University) ;
  • Seobin Yoon (Department of Life Science, Chung-Ang University) ;
  • Eui-Hwan Choi (Department of Life Science, Chung-Ang University) ;
  • Hana Hyeon (Department of Life Science, Chung-Ang University) ;
  • Kangseok Lee (Department of Life Science, Chung-Ang University) ;
  • Keun Pil Kim (Department of Life Science, Chung-Ang University)
  • Received : 2022.09.21
  • Accepted : 2022.12.11
  • Published : 2023.02.28

Abstract

Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea, funded by the Ministry of Science, ICT & Future Planning (2020R1A2C2011887; 2018R1A5A1025077) and the Chung-Ang University Graduate Research Scholarship in 2021.

References

  1. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  2. Wiedenheft B, Sternberg SH and Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338 https://doi.org/10.1038/nature10886
  3. Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
  4. Masukata H and Tomizawa J (1990) A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 62, 331-338 https://doi.org/10.1016/0092-8674(90)90370-T
  5. Aguilera A and Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46, 115-124 https://doi.org/10.1016/j.molcel.2012.04.009
  6. San Martin Alonso M and Noordermeer SM (2021) Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 49, 4848-4863 https://doi.org/10.1093/nar/gkab178
  7. Crossley MP, Bocek M and Cimprich KA (2019) R-loops as cellular regulators and genomic threats. Mol Cell 73, 398-411 https://doi.org/10.1016/j.molcel.2019.01.024
  8. Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-E2586 https://doi.org/10.1073/pnas.1208507109
  9. Wahba L, Gore SK and Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. Elife 2, e00505
  10. Choi EW, Yoon S, Koh YE, Seo YJ and Kim KP (2020) Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med 52, 1220-1229 https://doi.org/10.1038/s12276-020-0481-2
  11. Hong S, Joo JH, Yun H and Kim K (2019) The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 57, 221-231 https://doi.org/10.1007/s12275-019-8541-9
  12. Kim KP and Mirkin EV (2018) So similar yet so different, The two ends of a double strand break. Mutat Res 809, 70-80 https://doi.org/10.1016/j.mrfmmm.2017.06.007
  13. Choi EH, Yoon S, Hahn Y and Kim KP (2017) Cellular dynamics of Rad51 and Rad54 in response to postreplicative stress and DNA damage in HeLa cells. Mol Cells 40, 143-150 https://doi.org/10.14348/molcells.2017.2275
  14. Kasahara M, Clikeman JA, Bates DB and Kogoma T (2000) RecA protein-dependent R-loop formation in vitro. Genes Dev 14, 360-365 https://doi.org/10.1101/gad.14.3.360
  15. Zaitsev EN and Kowalczykowski SC (2000) A novel pairing process promoted by Escherichia coli RecA protein, inverse DNA and RNA strand exchange. Genes Dev 14, 740-749 https://doi.org/10.1101/gad.14.6.740
  16. Krejci L, Van Komen S, Li Y et al (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305-309 https://doi.org/10.1038/nature01577
  17. Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997
  18. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 https://doi.org/10.1016/j.cell.2014.02.001
  19. Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
  20. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
  21. Graf R, Li X, Chu VT and Rajewsky K (2019) sgRNA sequence motifs blocking efficient CRISPR/Cas9-mediated gene editing. Cell Rep 26, 1098-1103 https://doi.org/10.1016/j.celrep.2019.01.024
  22. Xu X, Duan D and Chen SJ (2017) CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Sci Rep 7, 143
  23. Chen F, Alphonse M and Liu Q (2020) Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12, e1609
  24. Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK and Sirover MA (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3- phosphate dehydrogenase. Proc Natl Acad Sci U S A 88, 8460-8464 https://doi.org/10.1073/pnas.88.19.8460
  25. Sentmanat MF, Peters ST, Florian CP, Connelly JP and Pruett-Miller SM (2018) A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8, 888
  26. Choi EW, Yoon S, Koh YE et al (2022) Meiosis‑specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 23, 70
  27. Seo GJ, Kim SE, Lee YM et al (2003) Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem Biophys Res Commun 304, 339-343 https://doi.org/10.1016/S0006-291X(03)00589-8
  28. Kurihara T, Kouyama-Suzuki E, Satoga M et al (2020) DNA repair protein RAD51 enhances the CRISPR/Cas9- mediated knock-in efficiency in brain neurons. Biochem Biophys Res Commun 524, 621-628 https://doi.org/10.1016/j.bbrc.2020.01.132
  29. Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871 https://doi.org/10.1126/science.aad8282
  30. Kim S, Hupperetz C, Lim S and Kim CH (2021) Genome editing of immune cells using CRISPR/Cas9. BMB Rep 54, 59-69 https://doi.org/10.5483/BMBRep.2021.54.1.245
  31. Lee HK, Oh Y, Hong J, Lee SH and Hur JK (2021) Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Rep 54, 98-105 https://doi.org/10.5483/BMBRep.2021.54.2.217
  32. Hong S, Joo JH, Yun H and Kim KP (2019) The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 57, 221-231 https://doi.org/10.1007/s12275-019-8541-9