Acknowledgement
This research was supported by the National Research Foundation of Korea, funded by the Ministry of Science, ICT & Future Planning (2020R1A2C2011887; 2018R1A5A1025077) and the Chung-Ang University Graduate Research Scholarship in 2021.
References
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Wiedenheft B, Sternberg SH and Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338 https://doi.org/10.1038/nature10886
- Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
- Masukata H and Tomizawa J (1990) A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 62, 331-338 https://doi.org/10.1016/0092-8674(90)90370-T
- Aguilera A and Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46, 115-124 https://doi.org/10.1016/j.molcel.2012.04.009
- San Martin Alonso M and Noordermeer SM (2021) Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 49, 4848-4863 https://doi.org/10.1093/nar/gkab178
- Crossley MP, Bocek M and Cimprich KA (2019) R-loops as cellular regulators and genomic threats. Mol Cell 73, 398-411 https://doi.org/10.1016/j.molcel.2019.01.024
- Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-E2586 https://doi.org/10.1073/pnas.1208507109
- Wahba L, Gore SK and Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. Elife 2, e00505
- Choi EW, Yoon S, Koh YE, Seo YJ and Kim KP (2020) Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med 52, 1220-1229 https://doi.org/10.1038/s12276-020-0481-2
- Hong S, Joo JH, Yun H and Kim K (2019) The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 57, 221-231 https://doi.org/10.1007/s12275-019-8541-9
- Kim KP and Mirkin EV (2018) So similar yet so different, The two ends of a double strand break. Mutat Res 809, 70-80 https://doi.org/10.1016/j.mrfmmm.2017.06.007
- Choi EH, Yoon S, Hahn Y and Kim KP (2017) Cellular dynamics of Rad51 and Rad54 in response to postreplicative stress and DNA damage in HeLa cells. Mol Cells 40, 143-150 https://doi.org/10.14348/molcells.2017.2275
- Kasahara M, Clikeman JA, Bates DB and Kogoma T (2000) RecA protein-dependent R-loop formation in vitro. Genes Dev 14, 360-365 https://doi.org/10.1101/gad.14.3.360
- Zaitsev EN and Kowalczykowski SC (2000) A novel pairing process promoted by Escherichia coli RecA protein, inverse DNA and RNA strand exchange. Genes Dev 14, 740-749 https://doi.org/10.1101/gad.14.6.740
- Krejci L, Van Komen S, Li Y et al (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305-309 https://doi.org/10.1038/nature01577
- Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997
- Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 https://doi.org/10.1016/j.cell.2014.02.001
- Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
- Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
- Graf R, Li X, Chu VT and Rajewsky K (2019) sgRNA sequence motifs blocking efficient CRISPR/Cas9-mediated gene editing. Cell Rep 26, 1098-1103 https://doi.org/10.1016/j.celrep.2019.01.024
- Xu X, Duan D and Chen SJ (2017) CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Sci Rep 7, 143
- Chen F, Alphonse M and Liu Q (2020) Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12, e1609
- Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK and Sirover MA (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3- phosphate dehydrogenase. Proc Natl Acad Sci U S A 88, 8460-8464 https://doi.org/10.1073/pnas.88.19.8460
- Sentmanat MF, Peters ST, Florian CP, Connelly JP and Pruett-Miller SM (2018) A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8, 888
- Choi EW, Yoon S, Koh YE et al (2022) Meiosis‑specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 23, 70
- Seo GJ, Kim SE, Lee YM et al (2003) Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem Biophys Res Commun 304, 339-343 https://doi.org/10.1016/S0006-291X(03)00589-8
- Kurihara T, Kouyama-Suzuki E, Satoga M et al (2020) DNA repair protein RAD51 enhances the CRISPR/Cas9- mediated knock-in efficiency in brain neurons. Biochem Biophys Res Commun 524, 621-628 https://doi.org/10.1016/j.bbrc.2020.01.132
- Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871 https://doi.org/10.1126/science.aad8282
- Kim S, Hupperetz C, Lim S and Kim CH (2021) Genome editing of immune cells using CRISPR/Cas9. BMB Rep 54, 59-69 https://doi.org/10.5483/BMBRep.2021.54.1.245
- Lee HK, Oh Y, Hong J, Lee SH and Hur JK (2021) Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Rep 54, 98-105 https://doi.org/10.5483/BMBRep.2021.54.2.217
- Hong S, Joo JH, Yun H and Kim KP (2019) The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 57, 221-231 https://doi.org/10.1007/s12275-019-8541-9