DOI QR코드

DOI QR Code

Signaling pathways underlying nitrogen transport and metabolism in plants

  • Su Jeong Choi (School of Biological Sciences and Technology, Chonnam National University) ;
  • Zion Lee (School of Biological Sciences and Technology, Chonnam National University) ;
  • Eui Jeong (School of Biological Sciences and Technology, Chonnam National University) ;
  • Sohyun Kim (School of Biological Sciences and Technology, Chonnam National University) ;
  • Jun Sung Seo (Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University) ;
  • Taeyoung Um (Agriculture and Life Sciences Research Institute, Kangwon National University) ;
  • Jae Sung Shim (School of Biological Sciences and Technology, Chonnam National University)
  • 투고 : 2022.10.18
  • 심사 : 2023.01.19
  • 발행 : 2023.02.28

초록

Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants.

키워드

과제정보

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Project No. 2021R1F1 A1060339), the New Breeding Technologies Development Program (Project No. PJ01654103), Chonnam National University (Project No.202233830001).

참고문헌

  1. Xu G, Fan X and Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63, 153-182  https://doi.org/10.1146/annurev-arplant-042811-105532
  2. Luo L, Zhang Y and Xu G (2020) How does nitrogen shape plant architecture? J Exp Bot 71, 4415-4427  https://doi.org/10.1093/jxb/eraa187
  3. Xuan W, Beeckman T and Xu G (2017) Plant nitrogen nutrition: sensing and signaling. Curr Opin Plant Biol 39, 57-65  https://doi.org/10.1016/j.pbi.2017.05.010
  4. Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R and Coruzzi GM (1996) The Molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47, 569-593  https://doi.org/10.1146/annurev.arplant.47.1.569
  5. Epstein E and Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. 2nd edn, Sinauer Assoc Inc, Sunderland, England 
  6. Zrenner R, Stitt M, Sonnewald U and Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57, 805-836  https://doi.org/10.1146/annurev.arplant.57.032905.105421
  7. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L and Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105, 1141-1157  https://doi.org/10.1093/aob/mcq028
  8. Rubio-Asensio JS and Bloom AJ (2016) Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. J Exp Bot 68, 2611-2625  https://doi.org/10.1093/jxb/erw465
  9. Good AG, Shrawat AK and Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9, 597-605  https://doi.org/10.1016/j.tplants.2004.10.008
  10. Guo JH, Liu XJ, Zhang Y et al (2010) Significant acidification in major chinese croplands. Science 327, 1008-1010  https://doi.org/10.1126/science.1182570
  11. Anas M, Liao F, Verma KK et al (2020) Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res 53, 47 
  12. Vidal EA, Alvarez JM, Araus V et al (2020) Nitrate in 2020: thirty years from transport to signaling networks. Plant Cell 32, 2094-2119  https://doi.org/10.1105/tpc.19.00748
  13. Liu KH and Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. Embo J 22, 1005-1013  https://doi.org/10.1093/emboj/cdg118
  14. Miller AJ, Fan X, Orsel M, Smith SJ and Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58, 2297-2306  https://doi.org/10.1093/jxb/erm066
  15. Jacquot A, Li Z, Gojon A, Schulze W and Lejay L (2017) Post-translational regulation of nitrogen transporters in plants and microorganisms. J Exp Bot 68, 2567-2580  https://doi.org/10.1093/jxb/erx073
  16. Fan X, Naz M, Fan X, Xuan W, Miller AJ and Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68, 2463-2475  https://doi.org/10.1093/jxb/erx011
  17. Tsay YF, Schroeder JI, Feldmann KA and Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705-713  https://doi.org/10.1016/0092-8674(93)90399-B
  18. Liu KH, Huang CY and Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865-874  https://doi.org/10.1105/tpc.11.5.865
  19. Ho CH, Lin SH, Hu HC and Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138, 1184-1194  https://doi.org/10.1016/j.cell.2009.07.004
  20. Morere-Le Paven MC, Viau L, Hamon A et al (2011) Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot 62, 5595-5605  https://doi.org/10.1093/jxb/err243
  21. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN and Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73-77  https://doi.org/10.1038/nature13074
  22. Verma P, Sanyal SK and Pandey GK (2021) Ca2+-CBL-CIPK: a modulator system for efficient nutrient acquisition. Plant Cell Rep 40, 2111-2122  https://doi.org/10.1007/s00299-021-02772-8
  23. Liu KH, Niu Y, Konishi M et al (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545, 311-316  https://doi.org/10.1038/nature22077
  24. Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A and Gutierrez RA (2015) The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant Physiol 169, 1397-1404  https://doi.org/10.1104/pp.15.00961
  25. Leran S, Edel KH, Pervent M et al (2015) Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Sci Signal 8, ra43 
  26. Munos S, Cazettes C, Fizames C et al (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16, 2433-2447  https://doi.org/10.1105/tpc.104.024380
  27. Remans T, Nacry P, Pervent M et al (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103, 19206-19211  https://doi.org/10.1073/pnas.0605275103
  28. Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN and Glass ADM (2012) Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol 194, 724-731  https://doi.org/10.1111/j.1469-8137.2012.04094.x
  29. Yong Z, Kotur Z and Glass AD (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J 63, 739-748  https://doi.org/10.1111/j.1365-313X.2010.04278.x
  30. Feng H, Yan M, Fan X et al (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62, 2319-2332  https://doi.org/10.1093/jxb/erq403
  31. Yan M, Fan X, Feng H, Miller AJ, Shen Q and Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34, 1360-1372  https://doi.org/10.1111/j.1365-3040.2011.02335.x
  32. Liu X, Huang D, Tao J, Miller AJ, Fan X and Xu G (2014) Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytol 204, 74-80  https://doi.org/10.1111/nph.12986
  33. Tong Y, Zhou JJ, Li Z and Miller AJ (2005) A two-component high-affinity nitrate uptake system in barley. Plant J 41, 442-450  https://doi.org/10.1111/j.1365-313X.2004.02310.x
  34. Engelsberger WR and Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69, 978-995  https://doi.org/10.1111/j.1365-313X.2011.04848.x
  35. Menz J, Li Z, Schulze WX and Ludewig U (2016) Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J 88, 717-734  https://doi.org/10.1111/tpj.13272
  36. Zou X, Liu MY, Wu WH and Wang Y (2020) Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation. J Integr Plant Biol 62, 865-876  https://doi.org/10.1111/jipb.12858
  37. Jacquot A, Chaput V, Mauries A et al (2020) NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana. New Phytol 228, 1038-1054  https://doi.org/10.1111/nph.16710
  38. Ohkubo Y, Kuwata K and Matsubayashi Y (2021) A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1. Nat Plants 7, 310-316  https://doi.org/10.1038/s41477-021-00870-9
  39. Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M and Matsubayashi Y (2017) Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3, 17029 
  40. Wirth J, Chopin F, Santoni V et al (2007) Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282, 23541-23552  https://doi.org/10.1074/jbc.M700901200
  41. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T and Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44, 726-734  https://doi.org/10.1093/pcp/pcg083
  42. Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ and Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587-1594  https://doi.org/10.1126/science.1101952
  43. Williamson G, Tamburrino G, Bizior A et al (2020) A two-lane mechanism for selective biological ammonium transport. eLife 9, e57183 
  44. Hao DL, Zhou JY, Yang SY, Qi W, Yang KJ and Su YH (2020) Function and regulation of ammonium transporters in plants. Int J Mol Sci 21, 3557 
  45. Ninnemann O, Jauniaux JC and Frommer WB (1994) Identification of a high affinity NH4+ transporter from plants. Embo J 13, 3464-3471  https://doi.org/10.1002/j.1460-2075.1994.tb06652.x
  46. Wood CC, Poree F, Dreyer I, Koehler GJ and Udvardi MK (2006) Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1;1. FEBS Lett 580, 3931-3936  https://doi.org/10.1016/j.febslet.2006.06.026
  47. Loque D, Mora SI, Andrade SL, Pantoja O and Frommer WB (2009) Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity. J Biol Chem 284, 24988-24995  https://doi.org/10.1074/jbc.M109.020842
  48. Loque D, Yuan L, Kojima S et al (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 48, 522-534  https://doi.org/10.1111/j.1365-313X.2006.02887.x
  49. Yuan L, Loque D, Kojima S et al (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19, 2636-2652  https://doi.org/10.1105/tpc.107.052134
  50. Duan F, Giehl RFH, Geldner N, Salt DE and von Wiren N (2018) Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots. PLoS Biol 16, e2006024 
  51. Giehl RFH, Laginha AM, Duan F, Rentsch D, Yuan L and von Wiren N (2017) A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis. Mol Plant 10, 1449-1460  https://doi.org/10.1016/j.molp.2017.10.001
  52. Loque D, Lalonde S, Looger LL, von Wiren N and Frommer WB (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446, 195-198  https://doi.org/10.1038/nature05579
  53. Wu X, Liu T, Zhang Y et al (2019) Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C-terminal sites. J Exp Bot 70, 4919-4930  https://doi.org/10.1093/jxb/erz230
  54. Neuhauser B, Dynowski M, Mayer M and Ludewig U (2007) Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiol 143, 1651-1659  https://doi.org/10.1104/pp.106.094243
  55. Yuan L, Gu R, Xuan Y et al (2013) Allosteric regulation of transport activity by heterotrimerization of Arabidopsis ammonium transporter complexes in vivo. Plant Cell 25, 974-984  https://doi.org/10.1105/tpc.112.108027
  56. Straub T, Ludewig U and Neuhauser B (2017) The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. Plant Cell 29, 409-422  https://doi.org/10.1105/tpc.16.00806
  57. Chen HY, Chen YN, Wang HY, Liu ZT, Frommer WB and Ho CH (2020) Feedback inhibition of AMT1 NH4+-transporters mediated by CIPK15 kinase. BMC Biol 18, 196 
  58. Beier MP, Obara M, Taniai A et al (2018) Lack of ACTPK1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium. Plant J 93, 992-1006  https://doi.org/10.1111/tpj.13824
  59. Qin DB, Liu MY, Yuan L et al (2020) Calcium-dependent protein kinase 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots. J Exp Bot 71, 5087-5097  https://doi.org/10.1093/jxb/eraa249
  60. Wang Q, Zhao Y, Luo W et al (2013) Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc Natl Acad Sci U S A 110, 13204-13209  https://doi.org/10.1073/pnas.1301160110
  61. Nasholm T, Kielland K and Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182, 31-48  https://doi.org/10.1111/j.1469-8137.2008.02751.x
  62. Wang X, Yang G, Shi M et al (2019) Disruption of an amino acid transporter LHT1 leads to growth inhibition and low yields in rice. BMC Plant Biol 19, 268 
  63. Dinkeloo K, Boyd S and Pilot G (2018) Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants. Semin Cell Dev Biol 74, 105-113  https://doi.org/10.1016/j.semcdb.2017.07.010
  64. Muller B, Fastner A, Karmann J et al (2015) Amino acid export in developing Arabidopsis seeds depends on UmamiT facilitators. Curr Biol 25, 3126-3131  https://doi.org/10.1016/j.cub.2015.10.038
  65. Zhao C, Pratelli R, Yu S, Shelley B, Collakova E and Pilot G (2021) Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. J Exp Bot 72, 6400-6417  https://doi.org/10.1093/jxb/erab288
  66. Lee YH, Foster J, Chen J, Voll LM, Weber AP and Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50, 305-319  https://doi.org/10.1111/j.1365-313X.2007.03045.x
  67. Svennerstam H, Ganeteg U and Nasholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180, 620-630  https://doi.org/10.1111/j.1469-8137.2008.02589.x
  68. Hirner A, Ladwig F, Stransky H et al (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18, 1931-1946  https://doi.org/10.1105/tpc.106.041012
  69. Perchlik M, Foster J and Tegeder M (2014) Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. J Exp Bot 65, 5193-5204  https://doi.org/10.1093/jxb/eru278
  70. Okumoto S, Schmidt R, Tegeder M et al (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277, 45338-45346  https://doi.org/10.1074/jbc.M207730200
  71. Hammes UZ, Nielsen E, Honaas LA, Taylor CG and Schachtman DP (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48, 414-426  https://doi.org/10.1111/j.1365-313X.2006.02880.x
  72. Hunt E, Gattolin S, Newbury HJ et al (2009) A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J Exp Bot 61, 55-64  https://doi.org/10.1093/jxb/erp274
  73. Ladwig F, Stahl M, Ludewig U et al (2012) Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiol 158, 1643-1655  https://doi.org/10.1104/pp.111.192583
  74. Schmidt R, Stransky H and Koch W (2007) The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226, 805-813  https://doi.org/10.1007/s00425-007-0527-x
  75. Canales J, Moyano TC, Villarroel E and Gutierrez RA (2014) Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Front Plant Sci 5, 22 
  76. Krouk G, Mirowski P, LeCun Y, Shasha DE and Coruzzi GM (2010) Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol 11, R123 
  77. Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M and Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783-798  https://doi.org/10.2307/3870432
  78. Wang R, Tischner R, Gutierrez RA et al (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136, 2512-2522  https://doi.org/10.1104/pp.104.044610
  79. Medici A and Krouk G (2014) The primary nitrate response: a multifaceted signalling pathway. J Exp Bot 65, 5567-5576  https://doi.org/10.1093/jxb/eru245
  80. Marchive C, Roudier F, Castaings L et al (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4, 1713 
  81. Wang R, Xing X, Wang Y, Tran A and Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol 151, 472-478  https://doi.org/10.1104/pp.109.140434
  82. Castaings L, Camargo A, Pocholle D et al (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57, 426-435  https://doi.org/10.1111/j.1365-313X.2008.03695.x
  83. Chu X, Wang JG, Li M et al (2021) HBI transcription factor-mediated ROS homeostasis regulates nitrate signal transduction. Plant Cell 33, 3004-3021  https://doi.org/10.1093/plcell/koab165
  84. Wang H, Han C, Wang JG et al (2021) Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression. Nat Plants 8, 1094-1107  https://doi.org/10.1038/s41477-022-01236-5
  85. Alvarez JM, Schinke AL, Brooks MD et al (2020) Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat Commun 11, 1157 
  86. Gaudinier A, Rodriguez-Medina J, Zhang L et al (2018) Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563, 259-264  https://doi.org/10.1038/s41586-018-0656-3
  87. Alvarez JM, Riveras E, Vidal EA et al (2014) Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. Plant J 80, 1-13  https://doi.org/10.1111/tpj.12618
  88. Konishi M, Okitsu T and Yanagisawa S (2021) Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis. J Exp Bot 72, 5735-5750  https://doi.org/10.1093/jxb/erab246
  89. Guan P, Ripoll JJ, Wang R et al (2017) Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci U S A 114, 2419-2424  https://doi.org/10.1073/pnas.1615676114
  90. Xu N, Wang R, Zhao L et al (2016) The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. Plant Cell 28, 485-504  https://doi.org/10.1105/tpc.15.00567
  91. Rubin G, Tohge T, Matsuda F, Saito K and Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21, 3567-3584  https://doi.org/10.1105/tpc.109.067041
  92. Zhang H and Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409  https://doi.org/10.1126/science.279.5349.407
  93. Konishi M and Yanagisawa S (2019) The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC Plant Biol 19, 90 
  94. Widiez T, El Kafafi el S, Girin T et al (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3- uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 108, 13329-13334  https://doi.org/10.1073/pnas.1017863108
  95. Maeda Y, Konishi M, Kiba T et al (2018) A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun 9, 1376-1376  https://doi.org/10.1038/s41467-018-03832-6
  96. Varala K, Marshall-Colon A, Cirrone J et al (2018) Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci U S A 115, 6494-6499  https://doi.org/10.1073/pnas.1721487115
  97. Brooks MD, Cirrone J, Pasquino AV et al (2019) Network walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat Commun 10, 1569 
  98. Swift J, Alvarez JM, Araus V, Gutierrez RA and Coruzzi GM (2020) Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates. Proc Natl Acad Sci U S A 117, 12531-12540  https://doi.org/10.1073/pnas.1918619117
  99. Bargmann BO, Marshall-Colon A, Efroni I et al (2013) TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol Plant 6, 978-980  https://doi.org/10.1093/mp/sst010
  100. Medici A, Marshall-Colon A, Ronzier E et al (2015) AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat Commun 6, 6274 
  101. Para A, Li Y, Marshall-Colon A et al (2014) Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proc Natl Acad Sci U S A 111, 10371-10376 https://doi.org/10.1073/pnas.1404657111