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Objective : The types and functions of lipids involved in glioblastoma (GB) are not well known. Lipidomics is a new field that 
examines cellular lipids on a large scale and novel aplication of lipidomics in the biomedical sciences have emerged. This study 
aimed to investigate the potential of blood lipids for use as biomarkers for the diagnosis of GB via untargated lipidomic approach. 
Gaining a deeper understanding of lipid metabolism in patients with GB can contribute to the early diagnosis with GB patiens and 
also development of novel and better therapeutic options. 
Methods : This study was performed using blood samples collected from 14 patients (eight females and six males) and 14 controls 
(eight females and six males). Lipids were extracted from blood samples and quantified using phosphorus assay. Lipid profiles of 
between patients with GB and controls were compared via an untargeted lipidomics approach using 6530 Accurate-Mass Q-TOF  
LC/MS mass spectrometer.
Results : According to the results obtained using the untargeted lipidomics approach, differentially regulated lipid species, 
including fatty acid (FA), glycerolipid (GL), glycerophospholipid (PG), saccharolipid (SL), sphingolipid (SP), and sterol lipid (ST) were 
identified between in patients with GB and controls.
Conclusion : Differentially regulated lipids were identified in patients with GB, and these lipid species were predicted as potential 
biomarkers for diagnosis of GB.
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INTRODUCTION

Glioblastoma (GB) is the most common and aggressive pri-

mary intracranial mass lesion observed in adults. Despite 

there being multimodal therapies against it, the average sur-

vival is approximately 12–14 months4). Normal cells primarily 

rely on mitochondrial oxidative phosphorylation, which typi-

cally has a relatively low glycolytic rate, to generate the energy 

needed for cellular processes. In contrast, energy production 

in cancer cells is mainly dependent on glycolysis followed by 

lactic acid fermentation. This phenomenon, termed as the 

“Warburg effect,” has long been recognized as the critical 

metabolic difference between cancer and normal cells3,29).

Rapidly proliferating cells also exhibit alterations in lipid 
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metabolism, and increased lipogenesis is considered another 

metabolic characteristic of cancer cells. Accordingly, glioma 

tissues have been shown to have increased lipid synthesis, and 

nuclear magnetic resonance studies have demonstrated a cor-

relation between the lipid resonance spectrums of GB extracts 

and the degree of malignancy11,35). Cancer cells utilize exoge-

nous fatty acids (FAs) for growth and increased de novo lipid 

synthesis19). Lipids, including FAs, triglycerides (TAGs), and 

phospholipids (PLs), are the mediators of signal transduction 

involved in numerous physiological responses. However, the 

mechanism by which lipids play a role in the development and 

progression of brain tumors is still unclear. Studies investigat-

ing brain tissues of patients with GB have shown that lipid 

droplets (LDs) that are not observed in normal brain tissues 

are highly abundant in tumor tissues; however, the types and 

functions of the lipids involved in GB are not well known33). A 

better understanding of lipid metabolism can contribute to 

the development of novel treatment modalities for GB. Given 

the critical role of lipids in cell membrane formation and sig-

nal transduction, identifying the key players involved in the 

reprogramming of lipid metabolism will enable the develop-

ment of novel therapeutic strategies and possible biomarkers 

for GB.

Lipidomics is a branch of science that focuses on the types 

of lipids and biological roles of proteins involved in lipid me-

tabolism and function, including their complete characteriza-

tion and gene regulation analysis24). Exploratory lipidomics 

can be classified into three types according to the analytical 

objective : focused lipidomics (lipid profiling), targeted lipi-

domics (targeted lipid analysis), and untargeted lipidomics 

(universal lipid profiling)36,42). Briefly, lipidomics involves the 

identification and quantification of lipids in biological sys-

tems9). Studies have shown that certain diseases (e.g., Al-

zheimer’s disease, schizophrenia, bipolar disorder, multiple 

sclerosis, chronic kidney failure, and cystic fibrosis) and can-

cers (e.g., prostate, insulin growth factor receptor-2 (IGFR-2)-

positive metastatic breast, and colorectal cancers) are closely 

related to changes in lipid ratio and that some lipid molecules 

are associated with the development of certain diseas-

es1,8,10,13,17,22,24,25,28,30,34,37,39,41,43,44). The outcomes of the studies 

suggest that alterations in the lipid profiles of different lipid 

types specific to different diseases can be used as biomarkers 

for that disease.

In our study, lipids isolated from blood samples obtained 

from patients with GB were investigated for the first time us-

ing an untargeted lipidomics approach to evaluate the poten-

tial of lipid species that vary between healthy individuals and 

patients with GB for use as biomarkers.

MATERIALS AND METHODS

This study was approved by University Ethics Committee of 

Sivas Cumhuriyet University (approval number : 2020-06/02, 

date of approval : November 6, 2020). The patients who pre-

sented to the brain and neurosurgery clinic with a preliminary 

diagnosis of an intracranial mass and were diagnosed with GB 

(World Health Organization grade IV) via pathological ex-

amination were included in this study. A control group com-

prising age- and sex-matched healthy individuals who did not 

have any chronic diseases and did not use any medications 

were included. Blood samples were collected from patients 

and controls (Table 1).

Sample collection
Of the 1-mL blood sample, 500 µL was immediately mixed 

with 1 mL of methanol:water (1.0 : 0.4 volume/volume [v/v]) 

and then placed stored at -80°C until lipid extraction was per-

formed as described below.

Bligh and Dyer method of blood lipid extraction
Lipids were extracted using chloroform and methanol ac-

cording to the Bligh and Dyer method6). Briefly, blood samples 

suspended in 1.25 mL of methanol and 1.25 mL of chloroform 

were subjected to lipidomics analysis. Tubes were vortexed for 

30 seconds, allowed to sit for 10 minutes on ice, and centrifuged 

(213×g; 5 mintues), and the bottom chloroform layer was trans-

ferred to a new test tube. The extraction steps were repeated for 

Table 1. demographic characteristics of patients with glioblastoma and 
controls

Controls Patients

Age (years) 54.3±9.97 (39–76) 55.4±12.1 (38–78)

Sex (%)

Female 57.2 57.2

Male 42.8 42.8

Number 14 14

Values are presented as mean±standard deviation (range) or number
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a second time, and the obtained chloroform layers were com-

bined. The chloroform layers were dried under nitrogen, recon-

stituted with 50 µL of methanol : chloroform (3 : 1 v/v), and 

stored at -80°C until further analysis.

Lipid phosphorus assay
Lipid phosphorus was quantified using the phosphorus as-

say2). First, 400 µL of sulphuric acid (5 M) was added to the 

extracted lipids (10 µL), and the solution was heated in a glass 

test tube at 180–200°C for 1 hour. Next, 100 µL of 30% H2O2 

was added to the tube while vortexing, and the tube was heat-

ed at 180–200°C for 1.5 hours. A reagent (4.6 mL; 1.1 g ammo-

nium molybdate tetrahydrate + 12.5 mL sulphuric acid + 500 

mL double distilled water) was added and vortexed, followed 

by the addition of 100 µL of 15% ascorbic acid and vortexing. 

The solution was heated for 7–10 minutes at 100°C, and a 150-

µL aliquot was used to measure the absorbance at 830 nm.

Quadrupole time-of-flight liquid mass spectrom-
eter (Q-TOF LC/MS) : electrospray ionisation 
mass spectrometry (ESI-MS)-based lipid analysis

Lipid extract samples (500 pmol/µL) were prepared by re-

constitution in chloroform:methanol (2 : 1, v/v). ESI-MS was 

performed as described previously18,26,39) using an Agilent 

Technologies 6530 Accurate-Mass Q-TOF LC/MS mass spec-

trometer (Agilent Technologies, Santa Clara, CA, USA) with a 

dry nitrogen gas flow rate of 8 L/min at 350°C and a nebulizer 

pressure of 30 psi. The scanning range was from 200 to 1000 

mass/charge (m/z) ratio for 5 µL of the sample scanned in pos-

itive and negative ion mode for 2.5 minutes with a mobile 

phase of acetonitrile : methanol : water (2 : 3 : 1) in 0.1% am-

monium formate. As described previously32), qualitative iden-

tification of individual PL molecular species was based on 

their calculated theoretical monoisotopic mass values, subse-

quent MS/MS analysis, and their level normalized to either 

the total ion count or the most abundant PL. Fragmentation 

was performed using an Agilent Technologies 6530 Accurate-

Mass Q-TOF LC/MS mass spectrometer equipped with an ESI 

source. The direct injection feature of the HPLC system (Agi-

lent Technologies) was used to introduce the analyte. The dry 

nitrogen gas flow rate was 8.0 L/min at 350°C. ESI-MS analy-

sis spectrums in positive and negative ion modes were ob-

tained using Agilent Technologies 6530 Accurate-Mass Q-

TOF LC/MS mass spectrometer. A tentative ID was assigned 

based on the m/z ratio and the LIPID MAPS database20).

Statistical analysis 
Multivariate principal component analysis (PCA) was per-

formed using MetaboAnalyst 5.0 (https://www.metaboana-

lyst.ca)21). Automatic peak detection and spectrum deconvolu-

tion was performed using a peak width set at 0.5. Data were 

normalized to the sum, and scaled to the Z-value. Analysis 

parameters consisted of interquartile range filtering and sum 

normalization without the removal of outliers from the datas-

et. Features were selected based on volcano plot analysis and 

were further identified using MS/MS analysis. Significance for 

the volcano plot analysis was determined based on a fold 

change threshold of 2.00 and p≤0.05. Following identifica-

tion, the total ion count was used to normalize each parent 

lipid level, and the change in the relative abundance of that 

lipid species as compared to its control was determined. This 

is the standard method for lipidomics analysis as reported in 

previous studies18,26).

RESULTS

The data obtained from ESI-MS analysis were analyzed us-

ing the parameters presented in the Materials and Methods 

section via MetaboAnalyst 5.0 and Lipid Maps databases. Figs. 

1A and B, 2A (for positive ion mode) and Figs. 3A and B, 4A 

(for negative ion mode) represented that the whether there was 

a difference between the GB and control groups via multivari-

ate analyses, such as PCA, partial least squares discriminant 

analysis (2D-PLS-DA), and OrthoPLSDA analysis. PCA is the 

most used explorative multivariate method. PCA is generally 

preferred for purposes of data reduction. The primary goal of 

PCA is to explain the variation in the original data using a re-

duced space, defined by variables called principal components 

(PC1 and PC2), which retain most of the relevant information 

from the original data. The ideal situation occurs when con-

trol and treated samples appear far enough to be completely 

distinguished. The 2D-PLS-DA analysis of the targeted ac-

quired data (Figs. 1B and 3B) resulted in better model separa-

tion compared to the PCA model (Figs. 1A and 3A) created 

from the blood samples. The score plots of the 2D-PLS-DA 

from untargeted lipidomics were clearly clustered between GB 

patients (green) and control (red) groups. Further, t-test was 
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Fig. 1. Principal component analysis (2d-PcA; A), partial least squares discriminant analysis (2d-PLS-dA; b), t-test (c), fold change (Fc) (d), and volcano 
(Vc) (e) plots of patients with glioblastoma and controls in positive ion mode.
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performed (Fig. 1C for positive ion mode; Fig. 3C for negative 

ion mode). Assuming a fold change threshold of 2.0 and a p-

value of 0.05, lipid types (detected by t-test) that differed be-

tween the two groups were identified using this changing ratio 

(fold change; Fig. 1D for positive ion mode; Fig. 3D for nega-

tive ion mode). Volcano plot, which numerically gives the m/z 

ratios of lipid types varying between groups, was obtained by 

combining the t-test and the logarithm of the fold change 

graphs (Fig. 1E for positive ion mode; Fig. 3E for negative ion 

mode). The m/z ratios obtained from the volcano plot were 

interpreted using the Lipid Maps database, and the classes of 

lipid types corresponding to these m/z ratios were determined 

using MS-MS validation (Tables 2 and 3). Orthogonal projec-

tions to latent structures (OPLS) has a similar predictive ca-

pacity compared to PLS and improves the interpretation of 

the predictive components and of the systematic variation 

(Figs. 2A and 4A)27). In particular, OPLS modeling of single 

responses only requires one predictive component.

Table 2 presents the corresponding lipid classes in the Lipid 

Maps database of 32 significantly altered (p<0.05) m/z ratios 

obtained from the volcano plot data. Fig. 2B shows the vari-

able importance projection (VIP) scores of the lipid types that 

were significantly different (p<0.05) between patients with GB 

and controls, with m/z ratios obtained from the volcano plot 

on the Y-axis. The levels of 17 and 15 lipid types were found to 

be higher (shown in red) and lower (shown in blue), respec-

tively, in patients with GB than in controls. Table 3 presents 

the corresponding lipid classes in the Lipid Maps database of 

30 significantly altered (p<0.05) m/z ratios obtained from the 

volcano plot data. Fig. 4B shows the VIP scores of the lipid 

species found to be different between patients with GB and 

controls, with m/z ratios obtained from the volcano plot on 

the Y-axis. The levels of 20 and 10 lipid types were found to be 

higher (shown in red) and lower (shown in blue), respectively, 

in patients with GB than in controls. These lipid types with 

increased and decreased levels due to GB are predicted as lipid 

biomarkers for GB.

DISCUSSION

GB is the most common and rapidly progressing malignant 

form of primary brain tumors of the central nervous system. 

It is characterized by a poor prognosis31). It is highly invasive, 

and despite the current treatment options, improved survival 

rates have not been reported over the past two decades. Bio-

markers can be considered as diagnostic, prognostic, or thera-

peutic indicators of a disease. New approaches and technolo-

gies based on system biology have the potential to identify 

biomarkers that can be used as new therapeutic targets for GB. 

Identification of cancer-specific biomarkers and detection of 

tumors from easily accessible samples, such as bodily f luids 

(e.g., blood, urine, or saliva), will be a significant advance in 

the field of neuro-oncology14,16). There is an immense need to 
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Fig. 3. Principal component analysis (2d-PcA; A), partial least squares discriminant analysis (2d-PLS-dA; b), t-test (c), fold change (Fc) (d), and volcano 
(Vc) (e) plots of patients with glioblastoma and controls in negative ion mode.
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advance the use of biomarkers in the field of neuro-oncology 

as current imaging systems often fail to provide adequate in-

formation about relapsing tumor growth or the actual biologi-

cal status of either the primary or recurrent tumor. This lack 

of knowledge leads to a fairly uniform treatment regimen for 

every patient, precluding an individualized approach for the 

management of the disease and the assessment of individual 

responses to treatment.

Lipids stored in tumor cells are thought to play a number of 

critical roles during nutritional stress, including energy pro-

duction, membrane biogenesis, cellular signaling, and nutri-

ent transport38). In addition to other functions, lipids essen-

tially act as structural components of cellular membranes. 

Lipids can be detected in brain tissues due to cell membrane 

destruction and necrosis of malignant brain tumors, such as 

GB. Lipidomics analyses revealed the accumulation of five 

major lipid classes in GB, predominantly ceramides, total po-

lar lipids (TPLs), diacylglycerol (DAGs), TAGs, and sphingo-

myelins (SMs). In previous studies, higher amounts of differ-

ent types of PLs were observed in the serum of patients with 

various primary brain tumors. Similarly, under lipid-restrict-

ed growth conditions, cancer cells have been reported to ex-

hibit an increased dependence on de novo FA synthesis to 

maintain their growth and survival. In a study by Taïb et al.33), 

multiple changes in the lipidomics profiles of cells primarily 

including PLs, DAGs, and TAGs were demonstrated in re-

sponse to the absence of serum lipids. Accordingly, they pro-

posed that alterations in lipid types may indicate putative 

metabolic pathways that mediate cell growth in GB. Addition-

ally, they reported that GB cells alter their lipid composition as 

an adaptation mechanism in response to exogenous monoun-

saturated long chain FAs (e.g., oleic acid) through increased 

TAG accumulation and FA esterification and oxidation. Oleic 

acid also stimulates GB proliferation through a mechanism 

involving monoacylglycerol lipase33). Examination of brain 

tissues collected from patients with GB shows that LDs are 

abundant in tumor tissues but are not found in normal brain 

tissues33). Taïb et al.33) treated U138 GB cells with oleic acid to 

investigate how FAs are utilized by GB cells and assess their 

role in GB proliferation. This treatment induces the accumu-

lation of perilipin-2-coated LDs containing TAGs enriched in 

C18 : 1 FAs and an increase in FA oxidation. Interestingly, ole-

ic acid also increased glucose utilization and proliferation of 

GB cells. In contrast, the pharmacological inhibition of 

monoacylglycerol lipase reduced GB proliferation. Hence, it 

was suggested that monounsaturated FAs increase GB prolif-

eration through triglyceride metabolism, indicating a novel 

LD-mediated pathway that may be a therapeutic target for GB. 

Hu et al.15) orally administered carbon-13 (13C) FAs to mice us-

ing a gastric probe and reported a significant 13C increase in 

gliomas and a minor 13C increase in capillary endothelial cells 

of the normal brain tissue. These results were supported by a 

previous study showing the disruption of the blood-brain bar-

rier in an experimental brain metastases model40). Moreover, 
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lipids containing FAs, TAGS, and PLs have been implicated as 

mediators of signal transduction involved in several physio-

logical reactions23). Circulating lipid types have not been ex-

tensively studied as putative biomarkers in patients with GB; 

however, 24S-hydroxycholesterol is among the brain-specific 

lipids identified in the systemic blood circulation5). However, 

elevated serum levels of 24S-hydroxycholesterol are only ob-

served following severe central nervous system trauma and 

not in response to brain tumors7).

In general, GB xenograft tumor tissues have been observed Table 2. Lipid types and classes different between patients with 
glioblastoma and controls (positive ion mode; p<0.05)

m/z* p-value* Lipid class†
Increase/decrease 
in patients with GB 

compared with controls‡

106.0841 0.022205 FA ↓
113.1321 0.004203 FA ↓
121.0341 0.002482 FA ↓
126.0921 1.49E-05 - ↑
175.0154 0.000105 FA ↓
230.2477 0.001919 FA, SP ↓
242.2841 0.03904 FA, SP ↓
280.1649 0.000489 FA ↓
314.3417 0.018933 FA, GP, SP ↑
315.345 0.015274 FA, ST ↑
399.2657 0.001666 FA, ST ↓
414.2708 0.00266 FA, ST ↓
482.2673 0.046434 FA, GP, SP ↓
486.3349 0.00098 GP ↓
487.338 0.0000902 FA, GL, GP, SP, ST ↓
515.5512 0.04584 FA ↓
516.3695 0.000706 GP, ST ↓
518.3602 0.000501 FA, GL, GP ↓
519.3639 0.0000279 FA, ST ↓
530.391 0.000993 FA, GL, GP, ST ↓
628.6794 0.046768 ST ↑
703.5744 0.000122 GP, SP, ST ↑
704.5815 0.0000713 GL, GP, SP, ST ↑
705.5877 0.0000922 FA, GP, SL, SP, ST ↑
758.569 0.027177 GL, GP, SP ↑
759.572 0.026861 SP, ST ↑
804.5467 0.024773 FA, GL, GP, SP ↓
992.7386 0.017722 FA, GL, SP ↑
993.7419 0.01786 - ↑
994.7447 0.012046 FA, GL, GP ↑
997.6946 0.004724 - ↑
998.6976 0.004118 FA, GL,   GP ↑

*Volcano plot data. †Lipid classes from the Lipid Maps database. 
‡OrthoPLSDA-VIP score. GB : glioblastoma, FA : fatty acid, SP : sphingolipid, 
GP : glycerophospholipid, ST : sterol lipid, GL : glycerolipid, SL : saccharolipid

Table 3. Lipid types and classes different between patients with 
glioblastoma and controls (negative ion mode; p<0.05)

m/z* p-value* Lipid class†
Increase/decrease 
in patients with GB 

compared with controls‡

134.0283 0.020233 FA ↑
150.0562 5.45E-05 - ↑
246.9501 0.012525 FA ↓
279.232 0.01696 FA ↑
384.9347 2.35E-06 FA, ST ↓
484.2491 0.0089421 GP ↓
520.9096 6.50E-07 FA, GP, SP, ST ↓
540.3255 0.00014953 GP, SP, ST ↑
541.3304 0.00034922 FA, GL, ST ↑
542.332 0.00019783 FA, GP, SP ↑
556.0013 3.18E-05 FA, GP ↓
566.3432 0.002259 FA, GP ↑
666.0197 0.00023965 FA, GL, GP, SP, ST ↓
667.0224 5.06E-05 GP, SP ↓
716.5216 1.76E-07 GL, GP, SP, ST ↑
733.548 0.0002897 FA, GL, SP ↑
734.0068 6.01E-05 GL, GP, ST ↓
735.0084 0.00081734 GL, GP, SP ↓
773.5781 0.001625 GL, GP, SP ↓
776.5604 0.020301 GL, GP ↑
788.5476 0.00046751 FA, GL, GP, SP ↑
788.9745 0.0010048 FA, GL, GP, SP ↑
804.5721 2.32E-08 FA, GL, GP ↑
805.5769 7.10E-10 GP, SP ↑
806.5796 4.18E-11 GL, GP, ST ↑
830.5842 0.0019035 FA, GL, GP ↑
831.5926 0.0071305 GP, SP ↑
838.5636 0.0011137 FA, GL, GP, ST ↑
854.5895 0.00088558 GL, GP, ST ↑
855.5933 0.0041998 GP ↑

*Volcano plot data. †Lipid classes from the Lipid Maps database. 
‡OrthoPLSDA-VIP score. GB : glioblastoma, FA : fatty acid, ST : sterol lipid, GP : 
glycerophospholipid, SP : sphingolipid, GL : glycerolipid 
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to have significantly lower lipid levels compared with normal 

brain tissues. These results suggest that GB cells can oxidize 

FA as an additional energy source in a nutrient-free cancer en-

vironment. Normal brain tissues have extensive cellular insu-

lation containing lipid-rich myelin. The replacement of nor-

mal neuronal cells by tumor cells is accompanied by a 

reduction in lipid-rich myelin, followed by a reduction in the 

overall lipid profile of the tumor. Ha et al.12) investigated lipid 

biomarkers in ectopic and orthotopic human GB xenograft 

models. Proteins, metabolites, and lipids were isolated from 

the collected tumor tissues following the injection of primary 

patient cell lines, GBM10 and GBM43, into the lateral and 

right cerebral hemispheres of nonobese diabetic/severe com-

bined immunodeficiency (NOD/SCID) mice. Lipid analysis 

was performed via reversed-phase high-performance liquid 

chromatography coupled with Fourier transform ion cyclo-

tron resonance MS. More than 500 lipids were identified in 

each tumor model, and a comparison of ectopic and ortho-

topic tumor models revealed that the most prominent changes 

in lipid types predominantly occurred in four major lipid 

classes―glycosphingolipids, glycerophosphoethanolamines, 

triacylglycerols, and glycerophosphoserines12).

CONCLUSION

In our study, all lipid profiles of patients with GB and con-

trols were compared using the untargeted lipidomics ap-

proach. Lipid types that differed significantly between patients 

with GB and controls were determined via screening using 

both positive and negative ion detection modes. The results 

obtained using the untargeted lipidomics approach predicted 

sxt-two m/z ratios which corresponding different lipid types 

with significantly increased/decreased levels (p<0.05) in pa-

tients with GB and controls as possible biomarkers for GB. 

With the application of the untargeted lipidomics approach, 

specific lipid classes can distinguished and the m/z ratios of 

the lipid types corresponding to more than one lipid class (Ta-

bles 2 and 3) can be determined, which can help predict more 

lipid types as biomarkers. In conclusion, lipid classes such as 

FA, glycerophospholipid, and glycerolipid displayed the most 

significant changes in patients with GB; however, the changes 

were also detected in a small number of lipid types among 

sphingolipid and sterol lipid classes. We propose that these 

lipid types can be used as possible biomarkers for GB diagno-

sis and also development different treatment stratecies.

AUTHORS’ DECLARATION

Conflicts of interest
No potential conflict of interest relevant to this article was 

reported.

Informed consent
Informed consent was obtained from all individual partici-

pants included in this study.

Author contributions
Conceptualization : BS, SŞB; Data curation : BS, ZB, SŞB; 

Formal analysis : SŞB; Funding acquisition : BS, ZB, SŞB; 

Methodology : BS, ZB, SŞB; Project administration : BS, ZB, 

SŞB; Visualization : BS, SŞB; Writing - original draft : BS, SŞB; 

Writing - review & editing : BS, ZB, SŞB

Data sharing
None

Preprint
None

ORCID

Burcak Soylemez https://orcid.org/0000-0001-8626-6915

Zekeriya Bulut https://orcid.org/0000-0002-7663-4523

Serap Şahin-Bölükbaşı https://orcid.org/0000-0003-1057-2558

References

  1. Astarita G, Piomelli D : Towards a whole-body systems [multi-organ] 

lipidomics in Alzheimer’s disease. Prostaglandins Leukot Essent 
Fatty Acids 85 : 197-203, 2011 

  2. Bartlett GR : Phosphorus assay in column chromatography. J Biol 
Chem 234 : 466-468, 1959 

  3. Beloribi-Djefaflia S, Vasseur S, Guillaumond F : Lipid metabolic repro-

gramming in cancer cells. Oncogenesis 5 : e189, 2016

  4. Bilgin E, Duman BB, Altintas S, Cil T, Gezercan Y, Okten AI : Predictors 



J Korean Neurosurg Soc 66 | March 2023

142 https://doi.org/10.3340/jkns.2022.0091

of survival in Turkish patients with primary glioblastoma. Turk Neuro-
surg 31 : 641-653, 2021

  5. Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J : 

Cholesterol homeostasis in human brain: turnover of 24S-hydroxycho-

lesterol and evidence for a cerebral origin of most of this oxysterol in the 

circulation. J Lipid Res 39 : 1594-1600, 1998 

  6. Bligh EG, Dyer WJ : A rapid method of total lipid extraction and purifica-

tion. Can J Biochem Physiol 37 : 911-917, 1959

  7. Bretillon L, Sidén A, Wahlund LO, Lütjohann D, Minthon L, Crisby M, et 

al. : Plasma levels of 24S-hydroxycholesterol in patients with neurologi-

cal diseases. Neurosci Lett 293 : 87-90, 2000

  8. Del Boccio P, Pieragostino D, Di Ioia M, Petrucci F, Lugaresi A, De Luca 

G, et al. : Lipidomic investigations for the characterization of circulating 

serum lipids in multiple sclerosis. J Proteomics 74 : 2826-2836, 2011

  9. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm 

RW, et al. : Global analysis of the yeast lipidome by quantitative shotgun 

mass spectrometry. Proc Natl Acad Sci U S A 106 : 2136-2141, 2009

10. Guerrera IC, Astarita G, Jais JP, Sands D, Nowakowska A, Colas J, et al. : 

A novel lipidomic strategy reveals plasma phospholipid signatures asso-

ciated with respiratory disease severity in cystic fibrosis patients. PLoS 
One 4 : e7735, 2009

11. Guo D, Bell EH, Chakravarti A : Lipid metabolism emerges as a promis-

ing target for malignant glioma therapy. CNS Oncol 2 : 289-299, 2013

12. Ha SJ, Showalter G, Cai S, Wang H, Liu WM, Cohen-Gadol AA, et al. : 

Lipidomic analysis of glioblastoma multiforme using mass spectrometry. 

Anal Chem 79 : 8423-8430, 2007

13. Han X : Multi-dimensional mass spectrometry-based shotgun lipidomics 

and the altered lipids at the mild cognitive impairment stage of Alzheim-

er’s disease. Biochim Biophys Acta 1801 : 774-783, 2010

14. Holdhoff M, Yovino SG, Boadu O, Grossman SA : Blood-based biomark-

ers for malignant gliomas. J Neurooncol 113 : 345-352, 2013 

15. Hu X, Matsumoto K, Jung RS, Weston TA, Heizer PJ, He C, et al. : GPI-

HBP1 expression in gliomas promotes utilization of lipoprotein-derived 

nutrients. Elife 8 : e47178, 2019

16. Jayaram S, Gupta MK, Polisetty RV, Cho WC, Sirdeshmukh R : Towards 

developing biomarkers for glioblastoma multiforme: a proteomics view. 

Expert Rev Proteomics 11 : 621-639, 2014 

17. Jia L, Wang C, Zhao S, Lu X, Xu G : Metabolomic identification of poten-

tial phospholipid biomarkers for chronic glomerulonephritis by using high 

performance liquid chromatography-mass spectrometry. J Chromatogr 
B Analyt Technol Biomed Life Sci 860 : 134-140, 2007 

18. Kinsey GR, Blum JL, Covington MD, Cummings BS, McHowat J, Schnell-

mann RG : Decreased iPLA2gamma expression induces lipid peroxida-

tion and cell death and sensitizes cells to oxidant-induced apoptosis. J 
Lipid Res 49 : 1477-1487, 2008 

19. Kuemmerle NB, Rysman E, Lombardo PS, Flanagan AJ, Lipe BC, Wells 

WA, et al. : Lipoprotein lipase links dietary fat to solid tumor cell prolif-

eration. Mol Cancer Ther 10 : 427-436, 2011

20. LIPID MAPS® : LIPID gateway, lipidomics. Available at : http://www.

lipidmaps.org/

21. MetaboAnalyst : MetaboAnalyst - statistical, functional and 

integrative analysis of metabolomics data. Available at : https://

www.metaboanalyst.ca/

22. Min HK, Lim S, Chung BC, Moon MH : Shotgun lipidomics for candidate 

biomarkers of urinary phospholipids in prostate cancer. Anal Bioanal 
Chem 399 : 823-830, 2011 

23. Muro E, Atilla-Gokcumen GE, Eggert US : Lipids in cell biology: how can 

we understand them better? Mol Biol Cell 25 : 1819-1823, 2014 

24. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L : From 

lipids analysis towards lipidomics, a new challenge for the analytical 

chemistry of the 21st century. Part II: analytical lipidomics. Trends Anal 
Chem 28 : 393-403, 2009

25. Ollero M, Astarita G, Guerrera IC, Sermet-Gaudelus I, Trudel S, Piomelli D, 

et al. : Plasma lipidomics reveals potential prognostic signatures within a 

cohort of cystic fibrosis patients. J Lipid Res 52 : 1011-1022, 2011

26. Peterson B, Stovall K, Monian P, Franklin JL, Cummings BS : Alterations 

in phospholipid and fatty acid lipid profiles in primary neocortical cells 

during oxidant-induced cell injury. Chem Biol Interact 174 : 163-176, 

2008

27. Pinto RC, Trygg J, Gottfries J : Advantages of orthogonal inspection in 

chemometrics. J Chemom 26 : 231-235, 2012 

28. Sabbagh MN, Sandhu S, Kolody H, Lahti T, Silverberg NB, Sparks DL : 

Studies on the effect of the apolipoprotein E genotype on the lipid pro-

file in Alzheimer’s disease. Curr Alzheimer Res 3 : 157-160, 2006

29. Santos CR, Schulze A : Lipid metabolism in cancer. FEBS J 279 : 2610-

2623, 2012

30. Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, 

et al. : High throughput lipidomic profiling of schizophrenia and bipolar 

disorder brain tissue reveals alterations of free fatty acids, phosphatidyl-

cholines, and ceramides. J Proteome Res 7 : 4266-4277, 2008

31. Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K, Palmer JD, et al. : 

Advanced magnetic resonance imaging in glioblastoma: a review. Chin 
Clin Oncol 6 : 40, 2017 

32. Taguchi R, Hayakawa J, Takeuchi Y, Ishida M : Two-dimensional analysis 

of phospholipids by capillary liquid chromatography/electrospray ioniza-

tion mass spectrometry. J Mass Spectrom 35 : 953-966, 2000 

33. Taïb B, Aboussalah AM, Moniruzzaman M, Chen S, Haughey NJ, Kim SF, 

et al. : Lipid accumulation and oxidation in glioblastoma multiforme. Sci 
Rep 9 : 19593, 2019

34. Touboul D, Gaudin M : Lipidomics of Alzheimer’s disease. Bioanalysis 6 :  
541-561, 2014

35. Tugnoli V, Tosi MR, Tinti A, Trinchero A, Bottura G, Fini G : Characteriza-

tion of lipids from human brain tissues by multinuclear magnetic reso-

nance spectroscopy. Biopolymers 62 : 297-306, 2001 

36. Vaz FM, Pras-Raves M, Bootsma AH, van Kampen AH : Principles and 

practice of lipidomics. J Inherit Metab Dis 38 : 41-52, 2015 

37. Wood PL : Mass spectrometry strategies for clinical metabolomics and 

lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsy-
chopharmacology 39 : 24-33, 2014 

38. Yang K, Rich JN : A delicate initiation: lipolysis of lipid droplets fuels 

glioblastoma. Mol Cell 81 : 2686-2687, 2021

39. Zhang L, Peterson BL, Cummings BS : The effect of inhibition of Ca2+-



 Glioblastoma with Untargeted Lipidomic Approach | Soylemez B, et al.

143J Korean Neurosurg Soc 66 (2) : 133-143

independent phospholipase A2 on chemotherapeutic-induced death and 

phospholipid profiles in renal cells. Biochem Pharmacol 70 : 1697-

1706, 2005 

40. Zhang RD, Price JE, Fujimaki T, Bucana CD, Fidler IJ : Differential per-

meability of the blood-brain barrier in experimental brain metastases 

produced by human neoplasms implanted into nude mice. Am J Pathol 
141 : 1115-1124, 1992 

41. Zhang Y, Wang Y, Guo S, Guo Y, Liu H, Li Z : Ammonia-treated N-(1-

naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid 

quantitative and qualitative determination of serum free fatty acids by 

matrix-assisted laser desorption/ionization-Fourier transform ion cy-

clotron resonance mass spectrometry. Anal Chim Acta 794 : 82-89, 

2013 

42. Zhao YY, Cheng XL, Lin RC : Lipidomics applications for discovering bio-

markers of diseases in clinical chemistry. Int Rev Cell Mol Biol 313 : 
1-26, 2014 

43. Zhou X, Mao J, Ai J, Deng Y, Roth MR, Pound C, et al. : Identification of 

plasma lipid biomarkers for prostate cancer by lipidomics and bioinfor-

matics. PLoS One 7 : e48889, 2012

44. Zhou X, Mao J, He Z, Henegar J : Lipidomics in identifying lipid biomark-

ers of prostate cancer. FASEB J 24(S1) : 354.6, 2010 


