Acknowledgement
본 연구는 국토교통과학기술진흥원 연구사업의 연구비 지원(과제번호21CTAP-C164360-01)에 의해 수행되었습니다.
References
- Chung, S.S., Lee, C.H., Kim, S.B. (2020) CORAL Transfer Learning for Deep Learning-Based Virtual Metrology Modeling, J. Korean Inst. Ind. Eng., 46(3), pp.319~325.
- Kim, D.A., Kim, S.T., Kim, K.S., Kim, H.R. (2018) Development of Conceptual Cost Estimating Model for Railway Bridges according to Design Changes - Focused on PSC BEAM, J. Korean Soc. Railw., 21(10), pp.1015~1021. https://doi.org/10.7782/JKSR.2018.21.10.1015
- Kim, M., Choi, S. (2022) Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge using Deep Learning, J. Comput. Struct. Eng. Inst. Korea, 35(6), pp. 375~380. https://doi.org/10.7734/COSEIK.2022.35.6.375
- Kim, S.I., Kwak, J.W. (2012) Traffic Safety and Passenger Comforts of Railway Bridges, Mag. & J. Korean Soc. Steel Constr., 24(3), pp.39~46.
- Kim, Y.M., Shin, S.J., Cho, H.W. (2020) Predictive Modeling for Machining Power Using Transfer Learning, J. Korean Inst. Ind. Eng., 46(2), pp.94~106.
- Korea Rail Network Authority (KRNA) (2014) Railway Design Guidlines and Handbook (Running safety and Ride Comfort review), KR C-08070.
- Weiss, K., Khoshgoftaar, T.M., Wang, D. (2016) A Survey of Transfer Learning, J. Big Data, 3(1), pp.1~40. https://doi.org/10.1186/s40537-015-0036-x
- Yosinski, J., Clune, J., Bengio, Y., Lipson, H. (2014) How Transferable are Features in Deep Neural Networks?, In Proceedings of the 27th International Conference on Neural Information Processing Systems, 2, pp.3320~3328.
- Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q. (2020) A Comprehensive Survey on Transfer Learning, Proceedings of the IEEE, 109(1), pp.43~76.