Acknowledgement
This project was funded and supported by the grant from Hanwha Aerospace as part of the development of 3D SLAM technology for unstructured environment.
References
- C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, "LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, DOI: 10.1109/icra40945.2020.9197567.
- W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, "FAST-LIO2: Fast Direct LiDAR-Inertial Odometry," IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053-2073, Aug., 2022, DOI: 10.1109/tro.2022.3141876.
- T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, "LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping," IEEE International Workshop on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020, DOI: 10.1109/iros45743.2020.9341176.
- H. Ye, Y. Chen, and M. Liu, "Tightly coupled 3D lidar inertial odometry and mapping," IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, DOI: 10.1109/icra.2019.8793511.
- C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, "On-manifold preintegration for real-time visual-inertial odometry," IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb., 2017, DOI: 10.1109/tro.2016.2597321.
- T. Shan and B. Englot, "Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, DOI: 10.1109/iros.2018.8594299.
- T. Qin, S. Cao, J. Pan, and S. Shen, "A general optimization-based framework for global pose estimation with multiple sensors," Computer Vision and Pattern Recognition, 2019, DOI: 10.48550/arXiv.1901.03642.
- X. Li, X. Wang, J. Liao, X. Li, S. Li, and H. Lyu, "Semi-tightly coupled integration of multi-GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments," Satellite Navigation, vol. 2, no. 1, Jan., 2021, DOI: 10.1186/s43020-020-00033-9.
- S. Cao, X. Lu, and S. Shen, "Gvins: Tightly coupled gnss-visual-inertial fusion for smooth and consistent state estimation," IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2004-2021, Aug., 2022, DOI: 10.1109/tro.2021.3133730.
- X. Niu, H. Tang, T. Zhang, J. Fan, and J. Liu, "IC-GVINS: A Robust, Real-time, INS-Centric GNSS-Visual-Inertial Navigation System," IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 216-223, Jan., 2023, DOI: 10.1109/lra.2022.3224367.
- Z. Gong, P. Liu, F. Wen, R. Ying, X. Ji, and R. Miao, W. Xue, "Graph-Based Adaptive Fusion of GNSS and VIO Under Intermittent GNSS-Degraded Environment," IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021, DOI: 10.1109/tim.2020.3039640.
- J. Beuchert, M. Camurri, and M. Fallon, "Factor Graph Fusion of Raw GNSS Sensing with IMU and Lidar for Precise Robot Localization without a Base Station," Robotics, 2022, DOI: 10.48550/arXiv.2209.14649.
- X. Ye, P. Ma, W. Liu, and F. Wang, "How NLOS Signals affect GNSS relative positioning," Journal of Physics: Conference Series, vol. 1693, 2020, DOI: 10.1088/1742-6596/1693/1/012184.
- L.-T. Hsu, "Analysis and modeling GPS NLOS effect in highly urbanized area," GPS solutions, vol. 22, no. 7, 2018, DOI: 10.1007/s10291-017-0667-9.
- C. Jiang, B. Xu, and L.-T. Hsu, "Probabilistic approach to detect and correct GNSS NLOS signals using an augmented state vector in the extended Kalman filter," GPS Solutions, vol. 25, no. 72, 2021, DOI: 10.1007/s10291-021-01101-6.
- N. Sunderhauf and P. Protzel, "Towards robust graphical models for GNSS-based localization in urban environments," International Multi-Conference on Systems, Signals and Devices, Chemnitz, Germany 2012, DOI: 10.1109/ssd.2012.6198059.
- W. Wen, X. Bai, Y. C. Kan, and L.-T. Hsu, "Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera," IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10651-10662, Nov., 2019, DOI: 10.1109/tvt.2019.2944680.
- X. Bai, W. Wen, G. Zhang, and L.-T. Hsu, "Real-time GNSS NLOS detection and correction aided by sky-pointing camera and 3D LiDAR," ION 2019 Pacific PNT Meeting, pp. 862-874, Honolulu, Hawaii, 2019, DOI: 10.33012/2019.16845.
- T. Suzuki, M. Kitamura, Y. Amano, and T. Hashizume, "High-accuracy GPS and GLONASS positioning by multipath mitigation using omnidirectional infrared camera," IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011, DOI: 10.1109/icra.2011.5980424.
- W. W. Wen, G. Zhang, and L.-T. Hsu, "GNSS NLOS exclusion based on dynamic object detection using LiDAR point cloud," IEEE transactions on intelligent transportation systems, vol. 22, no. 2, pp. 853-862, Feb., 2019, DOI: 10.1109/tits.2019.2961128.
- Z. Chen, A. Xu, X. Sui, C. Wang, S. Wang, J. Gao, and Z. Shi, "Improved-UWB/LiDAR-SLAM Tightly Coupled Positioning System with NLOS Identification Using a LiDAR Point Cloud in GNSS-Denied Environments," Remote Sensing, vol. 14, no. 6, Mar., 2022, DOI: 10.3390/rs14061380.
- Y. Gu, Y. Wada, L.-T, Hsu, and S. Kamijo, "SLAM with 3dimensional-GNSS," IEEE Symposium on Position Location and Navigation (PLANS), Savannah, USA, 2016, DOI: 10.1109/plans.2016.7479701.
- W. W. Wen and L.-T. Hsu, "3D LiDAR aided GNSS NLOS mitigation in urban canyons," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18224-18236, Oct., 2022, DOI: 10.1109/tits.2022.3167710.
- P. K. Enge, "The global positioning system: Signals, measurements, and performance," International Journal of Wireless Information Networks, vol. 1, pp. 83-105, 1994, DOI: 10.1007/bf02106512.
- J. Bressler, P. Reisdorf, M. Obst, and Gerd Wanielik, "GNSS positioning in non-line-of-sight context-A survey," International Conference on Intelligent Transportation, Rio de Janeiro, Brazil, 2016, DOI: 10.1109/itsc.2016.7795701.
- C. Li, X. Luo, S. Du, and L. Xiao, "A Method for Registration of 2-D Shapes," Congress on Image and Signal Processing, CIS, Chongqing, China, 2012, DOI: 10.1109/cisp.2012.6469977.
- L.-T. Hsu, N. Kubo, W. Wen, W. Chen, Z. Liu, T. Suzuki, and J. Meguro, "UrbanNav: An Open-Sourced Multisensory Dataset for Benchmarking Positioning Algorithms Designed for Urban Areas," The 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), pp. 226-256, 2021, DOI: 10.33012/2021.17895.
- MichaelGrupp/evo, [Online] , https://github.com/MichaelGrupp/evo, Accessed: Jan. 06, 2023.
- R. C. Conlter, "Implementation of the pure pursuit path tracking algorithm," The Robotics Institute, Carnegie Mellon Univ., Pittsburgh, Pennsylvania, USA, 1992, [Online] , https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf.