DOI QR코드

DOI QR Code

Culture Conditions for Improving Manipulation Efficiency of Rat Embryo

랫드 배아 조작 효율 향상을 위한 배양 조건

  • Ji Min Lee (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University)
  • 이지민 (서울대학교 수의과대학 실험동물의학교실)
  • Received : 2023.03.12
  • Accepted : 2023.03.21
  • Published : 2023.03.31

Abstract

Rats are one of the most widely used animals in biomedical sciences because their metabolism and physiology are comparable to humans. In recent years, gene-targeted models have been developed using various animal species utilizing engineered nucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas). It has recently become possible to efficiently transfect CRISPR/Cas into embryos via electroporation. However, electroporation can damage fertilized eggs; therefore, it is important to determine the optimal embryo culture conditions. A standardized approach for routine and reproducible rat transgenesis will render rat models more accessible for research. We performed experiments to obtain rat embryos with efficient superovulation and synchronization, and to investigate the appropriate medium conditions for pronuclear stage embryos subjected to electroporation stimulation for the introduction of engineered nuclease.

Keywords

Acknowledgement

본 연구는 한국연구재단 연구사업(과제명: 유전자가위기술을 활용한 랫드 형질전환 모델 기반의 전립선암 발병 기전 분석, 과제번호: NRF- 2016R1D1A1A02937331)의 지원에 의해 이루어진 것임.

References

  1. Biggers, J. D., Summers, M. C., McGinnis, L. K., 1997, Polyvinyl alcohol and amino acids as substitutes for bovine serum albumin in culture media for mouse preimplantation embryos, Hum. Reprod. Update., 3, 125-35. https://doi.org/10.1093/humupd/3.2.125
  2. Brinster, R. L., 1965, Studies on the development of mouse embyros in vitro. III. The effect of fixed- nitrogen source, J. Exp. Zool., 158, 69-77. https://doi.org/10.1002/jez.1401580107
  3. Corbin, T. J., McCabe, J. G., 2002, Strain variation of immature female rats in response to various superovulatory hormone preparations and routes of administration, Contemp. Top. Lab. Anim. Sci., 41, 18-23.
  4. Cornejo-Cortes, M., Sanchez-Torres, C., VazquezChagoyan, J., Suarez-Gomez, H., Garrido-Farina, G., Meraz-Rios, M., 2006, Rat embryo quality and production efficiency are dependent on gonadotrophin dose in superovulatory treatments, Lab. Anim., 40, 87-95. https://doi.org/10.1258/002367706775404471
  5. Cozzi, J., Anegon, I., Braun, V., Gross, A. C., Merrouche, C., Cherifi, Y., 2009, Pronuclear DNA injection for the production of transgenic rats, Methods. Mol. Biol., 561, 73-88. https://doi.org/10.1007/978-1-60327-019-9_5
  6. Filipiak, W. E., Saunders, T. L., 2006, Advances in transgenic rat production, Transgenic Res., 15, 673-86. https://doi.org/10.1007/s11248-006-9002-x
  7. Gordon, T., Borschel, G. H., 2017, The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries, Exp. Neurol., 287, 331-47. https://doi.org/10.1016/j.expneurol.2016.01.014
  8. Homberg, J., Wohr, M., Alenina, N., 2017, Comeback of the Rat in Biomedical Research, ACS. Chem. Neurosci., 8, 900-3. https://doi.org/10.1021/acschemneuro.6b00415
  9. Kaneko, T., Sakuma, T., Yamamoto, T., Mashimo, T., 2014, Simple knockout by electroporation of engineered endonucleases into intact rat embryos, Sci Rep., 4, 6328
  10. Kito, S., Yano, H., Ohta, Y., Tsukamoto, S., 2010, Superovulatory response, oocyte spontaneous activation, and embryo development in WMN/Nrs inbred rats, Exp. Anim., 59, 35-45. https://doi.org/10.1538/expanim.59.35
  11. Kon, H., Hokao, R., Shinoda, M., 2014, Fertilizability of superovulated eggs by estrous stage-independent PMSG/hCG treatment in adult Wistar-Imamichi rats, Exp. Anim., 63, 175-82. https://doi.org/10.1538/expanim.63.175
  12. Mashimo, T., 2014, Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats, Dev. Growth. Differ., 56, 46-52. https://doi.org/10.1111/dgd.12110
  13. Morbeck, D. E., Khan, Z., Barnidge, D. R., Walker, D. L., 2010, Washing mineral oil reduces contaminants and embryotoxicity, Fertil. Steril., 94, 2747-52. https://doi.org/10.1016/j.fertnstert.2010.03.067
  14. Oh, S. H., Miyoshi, K., Funahashi, H., 1998, Rat oocytes fertilized in modified rat 1-cell embryo culture medium containing a high sodium chloride concentration and bovine serum albumin maintain developmental ability to the blastocyst stage. Biol Reprod., 59, 884-9. https://doi.org/10.1095/biolreprod59.4.884
  15. Otsuki, J., Nagai, Y., Chiba, K., 2007, Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development, Fertil. Steril., 88, 741-3. https://doi.org/10.1016/j.fertnstert.2006.11.144
  16. Popova, E., Bader, M., Krivokharchenko, A., 2011, Effect of culture conditions on viability of mouse and rat embryos developed in vitro, Genes, 2, 332-44. https://doi.org/10.3390/genes2020332
  17. Quinn, P., Harlow, G. M., 1978, The effect of oxygen on the development of preimplantation mouse embryos in vitro, J. Exp. Zool., 206, 73-80. https://doi.org/10.1002/jez.1402060108
  18. Shao, Y., Guan, Y., Wang, L., Qiu, Z., Liu, M., Chen, Y., 2014, CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos, Nat. Protoc., 9, 2493-512. https://doi.org/10.1038/nprot.2014.171
  19. Szpirer, C., 2020, Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes, J. Biomed. Sci., 27, 84.
  20. Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B. J., Remy, S., 2011, Knockout rats generated by embryo microinjection of TALENs, Nat. Biotechnol., 29, 695-6.  https://doi.org/10.1038/nbt.1940