DOI QR코드

DOI QR Code

어린이집내 인공지능 로봇 사용경험 여부에 따른 유아의 인공지능 인식 차이

Differences in Preschool Children's Perceptions of Artificial Intelligence according to their Experiences with AI Robots in daycare centers

  • 이보람 (대구대학교 아동가정복지학과) ;
  • 김수정 (서울대학교 아동가족학과)
  • 투고 : 2023.02.23
  • 심사 : 2023.03.20
  • 발행 : 2023.04.30

초록

Objective: This study investigated the differences in preschool children's perceptions of artificial intelligence (AI) and their distribution by latent profiles according to their experience with AI robots in daycare centers. Methods: The participants included 119 five-year-old children, 52 of whom had experience with AI robots in daycare centers and 67 of whom did not. Children's perceptions of AI were measured using the Godspeed scale from Bartneck et al.(2009). Data were analyzed using a t-test, latent profile analysis, and chi-square test. Results: The results showed that compared to the inexperienced group, the experienced group reported lower levels of animacy and perceived intelligence of AI robots, indicating higher levels of AI knowledge and understanding. In addition, the experienced group had a higher probability of belonging to the 'machine recognition' type than 'organism recognition' type, although the difference was not statistically significant. Conclusion/Implications: The findings suggest that experience with AI robots in daycare centers can improve children's AI knowledge and understanding. To further enhance this effect, it is necessary to increase the number of robots put into classrooms, and to consider various teaching media that reflect children's preferences.

키워드

과제정보

이 논문은 2022년 대한민국 교육부와 한국연구재단의 인문사회분야 신진연구자지원사업의 지원을 받아 수행된 연구임 (NRF-2022S1A5A8052607).

참고문헌

  1. 교육부 (2020. 11). 인공지능시대 교육정책방향과 핵심과제: 대한민국 미래교육이 나아가야 할 길. https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&boardSeq=82674&lev=0&searchType=null&statusYN=W&page=1&s=moe&m=020402&opType=N에서 2022년 6월 8일 인출
  2. 김경철, 이고은 (2013). 교사보조로봇을 활용한 활동이 유아의 사회적 능력에 미치는 영향. 한국유아교육연구, 15(2), 29-49.
  3. 김민경, 이순형, 이동훈 (2018). 범주 경계선적 대상에 대한 유아의 생명현상 이해. 인간발달연구, 25(1), 169-194. https://doi.org/10.15284/kjhd.2018.25.1.169
  4. 김수환, 김성훈, 이민정, 김현철 (2020). K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰. 컴퓨터교육학회논문지, 23(4), 1-11. https://doi.org/10.32431/kace.2020.23.4.001
  5. 유구종, 이정순 (2013). 지능형로봇 활용 프로그램의 사회.정서 관련측면에서의 효과. 유아교육연구, 33(2), 393-425. https://doi.org/10.18023/KJECE.2013.33.2.018
  6. 이보람, 안혜령, 조우미 (2022). 인간형 인공지능 로봇 활용에 대한 유아교사의 인식과 요구분석. 인간발달연구, 29(3), 181-210. https://doi.org/10.15284/kjhd.2022.29.3.181
  7. 이하원, 이미숙, 신원애 (2020). 개정 누리과정 사회관계영역 중심 로봇 놀이활동 「ROBO - RANG」이 유아의 사회적 능력과 정서능력에 미치는 영향. 어린이미디어연구, 19(1), 1-24. https://doi.org/10.21183/kjcm.2020.03.19.1.1
  8. 임지명, 최연철 (2022). 유아 대상 인공지능교육의 방향 모색. 유아교육연구, 42(4), 273-296. https://doi.org/10.18023/kjece.2022.42.4.011
  9. 천희영 (2015). 만4세 유아의 스마트폰 이용 정도와 발달특성, 생활시간 간의 관계 및 이용 정도예측변인. 한국보육지원학회지, 11(6), 153-175. https://doi.org/10.14698/jkcce.2015.11.153
  10. 천희영, 박소연 (2020). STEAM교육 접근에 의한 언플러그드 로봇 놀이프로그램이 유아의 창의적및 사회적 인성 함양에 미치는 효과. 한국보육지원학회지, 16(5), 1-26. https://doi.org/10.14698/jkcce.2020.16.05.001
  11. 하수연, 이성애 (2012). 교사보조 인간형 로봇의 외형에 대한 만4세 유아 선호도 연구. 한국보육지원학회지, 8(5), 89-110.
  12. 현은자, 손수련 (2011). 로봇은 살아 있을까? : 우리 반 교사보조로봇에 대한 유아의 인식. 아동학회지, 32(4), 1-14.
  13. Ackermann, E. (2001). Piaget's constructivism, Papert's constructionism: What's the difference. Future of learning group publication, 5(3), 438-449.
  14. Bartneck, C., Kulic, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics, 1, 71-81. https://doi.org/10.1007/s12369-008-0001-3
  15. Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science robotics, 3(21), eaat5954. https://doi.org/10.1126/ scirobotics.aat5954
  16. Berson, I. R., Luo, W., & Yang, W. (2022). Narrowing the digital divide in early childhood: Technological advances and curriculum reforms. Early Education and Development, 33(1), 183-185. https://doi.org/10.1080/10409289.2022.1989740
  17. Burgsteiner, H., Kandlhofer, M., & Steinbauer, G. (2016). Irobot: Teaching the basics of artificial intelligence in high schools. Proceedings of the AAAI conference on artificial intelligence, 30(1), 4126-4127. https://doi.org/10.1609/aaai.v30i1.9864
  18. Chu, S. T., Hwang, G. J., & Tu, Y. F. (2022). Artificial intelligence-based robots in education: A systematic review of selected SSCI publications. Computers and education: Artificial intelligence, 100091. https://doi.org/10.1016/j.caeai.2022.100091
  19. Dreyfus, H. L. (1992). What computers still can't do: A critique of artificial reason. MIT press.
  20. Druga, S., Vu, S. T., Likhith, E., & Qiu, T. (2019). Inclusive AI literacy for kids around the world. Proceedings of FabLearn 2019, 104-111. https://doi.org/10.1145/3311890.3311904
  21. Druga, S., Williams, R., Breazeal, C., & Resnick, M. (2017). "Hey Google is it ok if I eat you?" Initial explorations in child-agent interaction. Proceedings of the 2017 conference on interaction design and children, 595-600. https://doi.org/10.1145/3078072.3084330
  22. Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: a three-factor theory of anthropomorphism. Psychological review, 114(4), 864-886. https://doi.org/10.1037/0033-295X.114.4.864
  23. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
  24. Gjersoe, N. L., Hall, E. L., & Hood, B. (2015). Children attribute mental lives to toys when they are emotionally attached to them. Cognitive Development, 34, 28-38. https://doi.org/10.1016/j.cogdev.2014.12.002
  25. Kahn, P. H., Jr., Kanda, T., Ishiguro, H., Freier, N. G., Severson, R. L., Gill, B. T., Ruckert, J. H., & Shen, S. (2012). "Robovie, you'll have to go into the closet now": Children's social and moral relationships with a humanoid robot. Developmental Psychology, 48(2), 303-314. https://doi.org/10.1037/a0027033
  26. Kennedy, J., Baxter, P., & Belpaeme, T. (2015). Comparing robot embodiments in a guided discovery learning interaction with children. International Journal of Social Robotics, 7, 293-308. https://doi.org/10.1007/s12369-014-0277-4
  27. Kewalramani, S., Kidman, G., & Palaiologou, I. (2021). Using Artificial Intelligence (AI)-interfaced robotic toys in early childhood settings: a case for children's inquiry literacy. European Early Childhood Education Research Journal, 29(5), 652-668. https://doi.org/10.1080/1350293X.2021.1968458
  28. Li, J. (2015). The benefit of being physically present: A survey of experimental works comparing copresent robots, telepresent robots and virtual agents. International Journal of HumanComputer Studies, 77, 23-37. https://doi.org/10.1016/j.ijhcs.2015.01.001
  29. Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778. https://doi.org/10.1093/biomet/88.3.767
  30. Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI conference on human factors in computing systems, 1-16. https://doi.org/10.1145/3313831.3376727
  31. Margett, T. E., & Witherington, D. C. (2011). The nature of preschoolers' concept of living and artificial objects. Child development, 82(6), 2067-2082. https://doi.org/10.1111/j.1467-8624.2011.01661.x
  32. Melson, G. F., Kahn Jr, P. H., Beck, A., Friedman, B., Roberts, T., Garrett, E., & Gill, B. T. (2009). Children's behavior toward and understanding of robotic and living dogs. Journal of Applied Developmental Psychology, 30(2), 92-102. https://doi.org/10.1016/j.appdev.2008.10.011
  33. Muthen, B., & Muthen, L. K. (2000). Integrating person-centered and variable-centered analysis: Growth mixure modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24(6), 882-891. https://doi.org/10.1097/00000374-200006000-00020
  34. Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
  35. Nigam, M. K., & Klahr, D. (2000). If robots make choices, are they alive?: Children's judgments of the animacy of intelligent artifacts. Proceedings of the Annual Meeting of the Cognitive Science Society, 22. https://escholarship.org/uc/item/6bw2h51d
  36. Nylund, K. L., Asparouhov, T., & Muthen, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural equation modeling: A multidisciplinary Journal, 14(4), 535-569. https://doi.org/10.1080/10705510701575396
  37. Peel, D., & McLachlan, G. J. (2000). Robust mixture modelling using the distribution. Statistics and Computing, 10, 339-348. https://doi.org/10.1023/A:1008981510081
  38. Rodriguez-Garcia, J. D., Moreno-Leon, J., Roman-Gonzalez, M., & Robles, G. (2020). Introducing artificial intelligence fundamentals with LearningML: Artificial intelligence made easy. Eighth international conference on technological ecosystems for enhancing multiculturality, 18-20. https://doi.org/10.1145/3434780.3436705
  39. Saylor, M. M., Somanader, M., Levin, D. T., & Kawamura, K. (2010). How do young children deal with hybrids of living and non-living things: The case of humanoid robots. British Journal of Developmental Psychology, 28(4), 835-851. https://doi.org/10.1348/026151009X481049
  40. Spatola, N., Kuhnlenz, B., & Cheng, G. (2021). Perception and evaluation in human-robot interaction: The Human-Robot Interaction Evaluation Scale (HRIES)-A multicomponent approach of anthropomorphism. International Journal of Social Robotics, 13(7), 1517-1539. https://doi.org/10.1007/s12369-020-00667-4
  41. Springer, K. (1992). Children's awareness of the biological implications of kinship. Child Development, 63(4), 950-959. https://doi.org/10.2307/1131246
  42. Sutherland, C. J. (2019). The Robots are the Same, the Children are Not. 2019 16th International Conference on Ubiquitous Robots (UR 2019), 254-258. https://doi.org/10.1109/URAI.2019.8768783
  43. Touretzky, D., Martin, F., Seehorn, D., Breazeal, C., & Posner, T. (2019). Special session: AI for K-12 guidelines initiative. Proceedings of the 50th ACM technical symposium on computer science education, 492-493. https://doi.org/10.1145/3287324.3287525
  44. Turkle, S., Taggart, W., Kidd, C. D., & Daste, O. (2006). Relational artifacts with children and elders: the complexities of cybercompanionship. Connection Science, 18(4), 347-361. https://doi.org/10.1080/09540090600868912
  45. Wang, B., Rau, P. L. P., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 1-14. https://doi.org/10.1080/0144929X.2022.2072768
  46. Williams, R., Park, H. W., & Breazeal, C. (2019). A is for artificial intelligence: the impact of artificial intelligence activities on young children's perceptions of robots. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 447, 1-11. https://doi.org/10.1145/3290605.3300677
  47. Yang, W. (2022). Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. Computers and Education: Artificial Intelligence, 3, 100061. https://doi.org/10.1016/j.caeai.2022.100061