DOI QR코드

DOI QR Code

Visualization and Electrical Response of Electroconvective Vortices on the Surface of Homo/Heterogeneous Ion Exchange Membranes

이온교환막의 균질/비균질 표면 형상에 따른 전기 와류 가시화 및 전기적 특성 분석

  • Myeonghyeon Cho (Department of Future Convergence Engineering, Kongju National University) ;
  • Jinwoong Choi (Department of Future Convergence Engineering, Kongju National University) ;
  • Bumjoo Kim (Department of Future Convergence Engineering, Kongju National University)
  • 조명현 (공주대학교 미래융합공학과) ;
  • 최진웅 (공주대학교 미래융합공학과) ;
  • 김범주 (공주대학교 미래융합공학과)
  • Received : 2022.12.26
  • Accepted : 2023.01.17
  • Published : 2023.01.27

Abstract

The electromembrane process, which has advantages such as scalability, sustainability, and eco-friendliness, is used in renewable energy fields such as fuel cells and reverse electrodialysis power generation. Most of the research to visualize the internal flow in the electromembrane process has mainly been conducted on heterogeneous ion exchange membranes, because of the non-uniform swelling characteristics of the homogeneous membrane. In this study, we successfully visualize the electro-convective vortices near the Nafion homogeneous membrane in PDMS-based microfluidic devices. To reinforce the mechanical rigidity and minimize the non-uniform swelling characteristics of the homogeneous membrane, a newly developed swelling supporter was additionally adapted to the Nafion membrane. Thus, a clear image of electroconvective vortices near the Nafion membrane could be obtained and visualized. As a result, we observed that the heterogeneous membrane has relatively stronger electroconvective vortices compared to the Nafion homogeneous membranes. Regarding electrical response, the Nafion membrane has a higher limiting current and less overlimiting current compared to the heterogeneous membrane. Based on our visualization, it is assumed that the heterogeneous membrane has more activated electroconvective vortices, which lower electrical resistance in the overlimiting current regime. We anticipate that this work can contribute to the fundamental understanding of the ion transport characteristics depending on the homogeneity of ion exchange membranes.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1F1A1064531) and (MOE) (2021RIS004).

References

  1. T. Luo, S. Abdu and M. Wessling, J. Membr. Sci., 555, 429 (2018).
  2. J. Luo, C. Wu, T. Xu and Y. Wu, J. Membr. Sci., 366, 1 (2011).
  3. V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, P. Sistat, P. Huguet, G. Pourcelly and C. Larchet, Adv. Colloid Interface Sci., 160, 101 (2010).
  4. S. Sharma and B. G. Pollet, J. Power Sources, 208, 96 (2012).
  5. W. Wang, Q. Luo, B. Li, X. Wei, L. Li and Z. Yang, Adv. Funct. Mater., 23, 970 (2013).
  6. M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, Int. J. Hydrogen Energy, 38, 4901 (2013).
  7. J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei and Y. Chen, J. Membr. Sci., 486, 71 (2015).
  8. H. Strathmann, A. Grabowski and G. Eigenberger, Ind. Eng. Chem. Res., 52, 10364 (2013).
  9. S. Al-Amshawee, M. Y. B. M. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil and H. A. Hasan, Chem. Eng. J., 380, 122231 (2020).
  10. B. Kim, R. Kwak, H. J. Kwon, V. S. Pham, M. Kim, B. Al-Anzi, G. Lim and J. Han, Sci. Rep., 6, 1 (2016).
  11. S. J. Kim, Y.-C. Wang, J. H. Lee, H. Jang and J. Han, Phys. Rev. Lett., 99, 044501 (2007).
  12. S. J. Kim, S. H. Ko, R. Kwak, J. D. Posner, K. H. Kang and J. Han, Nanoscale, 4, 7406 (2012).
  13. A. Mani and K. M. Wang, Annu. Rev. Fluid Mech., 52, 509 (2020).
  14. F. Roghmans, E. Evdochenko, F. Stockmeier, S. Schneider, A. Smailji, R. Tiwari, A. Mikosch, E. Karatay, A. Kuhne, A. Walther, A. Mani and M. Wessling, Adv. Mater. Interfaces, 6, 1801309 (2019).
  15. B. Kim, S. Choi, R. Kwak and J. Han, J. Membr. Sci., 524, 280 (2017).
  16. R. Kwak, G. Guan, W. K. Peng and J. Han, Desalination, 308, 138 (2013).
  17. S. Mikhaylin, V. Nikonenko, N. Pismenskaya, G. Pourcelly, S. Choi, H. J. Kwon, J. Han and L. Bazinet, Desalination, 393, 102 (2016).
  18. N. Pismenskaya, O. Rybalkina, I. Moroz, S. Mareev and V. Nikonenko, Int. J. Mol. Sci., 22, 13518 (2021).
  19. V. V. Gil, M. A. Andreeva, L. Jansezian, J. Han, N. D. Pismenskaya, V. V. Nikonenko, C. Larchet and L. Dammak, Electrochim. Acta, 281, 472 (2018). https://doi.org/10.1016/j.electacta.2018.05.195
  20. S. Kang and R. Kwak, Phys. Rev. Lett., 124, 154502 (2020).
  21. E. Korzhova, N. Pismenskaya, D. Lopatin, O. Baranov, L. Dammak and V. Nikonenko, J. Membr. Sci., 500, 161 (2016).
  22. J. Balster, M. H. Yildirim, D. F. Stamatialis, R. Ibanez, R. G. H. Lammertink, V. Jordan and M. Wessling, J. Phys. Chem. B, 111, 2152 (2007).
  23. N. Pismenskaya, E. Pokhidnia, G. Pourcelly and V. Nikonenko, J. Membr. Sci., 566, 54 (2018).
  24. E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet and G. Pourcelly, J. Colloid Interface Sci., 285, 247 (2005).
  25. M. Seo, W. Kim, H. Lee and S. J. Kim, Desalination, 538, 115902 (2022).
  26. Product data sheet of Ralex membrane CMHPP. Mega Group Companies Home Page. Retrieved January 5, 2023 from https://www.mega.cz/files/datasheet/MEGA-RALEX-CMHPP-en.pdf
  27. Nafon membrane comparison table. Fuel Cells Etc home Page. Retrieved January 5, 2023 from https://fuelcellsetc.com/helpful-tools/nafion-membrane-comparison-table/
  28. D. V. Golubenko, B. Van der Bruggen and A. B. Yaroslavtsev. J. Power Sources, 511, 230460 (2021).
  29. K. Hongsirikarn, J. G. Goodwin Jr, S. Greenway and S. Creager, J. Power Sources, 195, 7213 (2010).
  30. A. C. Fernandes and E. A. Ticianelli, J. Power Sources, 193, 547 (2009).
  31. S. Sohn, I. Cho, S. Kwon, H. Lee and S. J. Kim, Langmuir, 34, 7916 (2018).
  32. V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, N. D. Pismenskaya, J. Han, P. Sistat and G. Pourcelly, Desalination, 342, 85 (2014).