DOI QR코드

DOI QR Code

Effects of Cu and Zr Addition on the Tensile Properties, Corrosion Characteristics and Interfacial Compounds with Cast Iron of Al-Si-Mg Alloy for Compound Casting

복합주조용 Al-Si-Mg 합금의 인장성질, 부식특성 및 주철과의 접합계면 화합물에 미치는 Cu 및 Zr 첨가의 영향

  • Kyoung-Min Min (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Ki-Chae Jung (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Je-Sik Shin (Research Institute of Advanced Manufacturing and Materials Technology, Korea Institute of Industrial Technology) ;
  • Jeong-Min Kim (Department of Advanced Materials Engineering, Hanbat National University)
  • 민경민 (한밭대학교 신소재공학과) ;
  • 정기채 (한밭대학교 신소재공학과) ;
  • 신제식 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 김정민 (한밭대학교 신소재공학과)
  • Received : 2022.10.11
  • Accepted : 2022.12.14
  • Published : 2023.01.27

Abstract

In order to broaden the range of application of light weight aluminum alloys, it is necessary to enhance the mechanical properties of the alloys and combine them with other materials, such as cast iron. In this study, the effects of adding small amounts of Cu and Zr to the Al-Si-Mg based alloy on tensile properties and corrosion characteristics were investigated, and the effect of the addition on the interfacial compounds layer with the cast iron was also analyzed. Although the tensile strength of the Al-Si-Mg alloy was not significantly affected by the additions of Cu and Zr, the corrosion resistance in 3.5 %NaCl solution was found to be somewhat lowered in this research. The influence of Cu and Zr addition on the type and thickness of the interfacial compounds layer formed during compound casting with cast iron was not significant, and the main interfacial compounds were identified to be Al5FeSi and Al8Fe2Si phases, as in the case of the Al-Si-Mg alloys.

Keywords

Acknowledgement

This work was supported by the Industrial Strategic Technology Development Program funded by the Korean Government (MOTIE) (No. 20004117).

References

  1. R. Taghiabadi, A. Fayegh, A. Pakbin, M. Nazari and M. H. Ghoncheh, Trans. Nonferrous Met. Soc. China, 28, 1275 (2018).
  2. H. Huang, W. Li, C. Hu, L. Ding, Z. Jia and N. Zhou, Mater. Sci. Eng. A, 836, 142570 (2022).
  3. S. Mondol, U. Bansal, M. P. Singh, S. Dixit, A. Mandal, A. Paul and K. Chattopadhyay, Materialia, 23, 101449 (2022).
  4. M. Colombo, R. H. Buzolin, E. Gariboldi, R. Vallant and C. Sommitsch, Mater. Corros., 70, 246 (2019).
  5. X. Luo, H. Fang, H. Liu, Y. Yan, H. Zhu and K. Yu, Mater. Trans., 60, 737 (2019).
  6. C. Klose, P. Freytag, M. Otten, S. E. Thurer and H. J. Maier, Adv. Eng. Mater., 20, 1701027 (2018).
  7. B. Dangi, T. W. Brown and K. N. Kulkarni, J. Alloys Compd., 769, 777 (2018).
  8. W. Jiang, G. Li, Z. Jiang, Y. Wu and Z. Fan, Mater. Sci. Technol., 34, 1519 (2018).
  9. J. M. Kim, K. Shin and J. S. Shin, Metals, 10, 759 (2020).
  10. W. J. Cheng and C. J. Wang, Intermetallics, 19, 1455 (2011).
  11. H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. KaysserPyzalla and G. Eggeler, Acta Mater., 59, 1586 (2011).
  12. J. M. Kim, K. C. Jung, C. Y. Kim and J. S. Shin, J. Korean Foundry Soc., 41, 3 (2021).
  13. L. Zhou, H. Hyer, J. Chang, A. Mehta, T. Huynh, Y. Yang and Y. Sohn, Mater. Sci. Eng. A, 823, 141679 (2021).
  14. S. H. Woo, Y. J. Son and B. W. Lee, J. Korean Soc. Power Syst. Eng., 18, 29 (2014).
  15. J. S. Park, H. J. Lee and S. J. Kim, Korean J. Mater. Res., 28, 286 (2018).
  16. M. Zhang, K. Liu, J. Han, F. Qian, J. Wang and S. Guan, Mater. Today Commun., 26, 102055 (2021). https://doi.org/10.1016/j.mtcomm.2021.102055
  17. F. Schmid, D. Gehringer, T. Kremmer, L. Cattini, P. J. Uggowitzer, D. Holec and S. Pogatscher, Materialia, 21, 101321 (2022).
  18. H. Dong, W. Hu, Y. Du, X. Wang and C. Dong, J. Mater. Process. Technol., 212, 458 (2012).