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ABSTRACT. We present explicit formulas for the spectra of higher spin operators on the
subbundle of the bundle of spinor-valued trace free symmetric tensors that are annihi-
lated by Clifford multiplication over the standard sphere in odd dimension. In the even
dimensional case, we give the spectra of the square of such operators. The Dirac and
Rarita-Schwinger operators are zero-form and one-form cases, respectively. We also give
eigenvalue formulas for the conformally invariant differential operators of all odd orders
on the subbundle of the bundle of spinor-valued forms that are annihilated by Clifford
multiplication in both even and odd dimensions on the sphere.

1. Introduction

The higher spin operators are generalized gradients like the Dirac and Rarita-
Schwinger operators ([9], [13]). They are defined on the subbundle of the bundle of
spinor-valued trace free symmetric tensors that are annihilated by Clifford multi-
plication (5.5). On the standard sphere S™ with n odd, they act as a constant on
each Spin(n + 1) irreducible summand of the section space. We apply the spectrum
generating technique of [7] to get the eigenvalue quotients between Spin(n+1) sum-
mands and so to get the spectral function. From here, Theorem 5.3 and an easy
computation of the eigenvalue on a single Spin(n+1) summand leads us to complete
eigenvalue formulas for the operators. In the even dimensional case, these operators
map positive spinors to negative spinors and vice versa. So we consider the square
of the operators and get eigenvalue formulas.

Similarly, we consider the spin operators on the subbundle of spinor-forms that
are annihilated by Clifford multiplication. In this setting, only two different Spin(n+
1) isotypic types (4.1) appear and we give eigenvalue formulas for all odd order
conformally invariant differential operators in both even and odd dimensions.

2. Conformally Covariant Operators

Let (M, g) be an n-dimensional pseudo-Riemannian manifold. If f is a (possibly
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local) diffeomorphism on M, we denote by f- the natural action of f on tensor fields.
It acts on vector fields as f- X = (df)X and on covariant tensors as f-¢ = (f~1)*¢.
A vector field T is said to be conformal with conformal factor w € C°(M) if

Lrg=2wg,

where £ is the Lie derivative and ¢ is the metric tensor. The conformal vector fields
form a Lie algebra ¢(M,g). A conformal transformation on (M,g) is a (possibly
local) diffeomorphism h for which h-g = Q2g for some positive function Q € C°°(M).
The global conformal transformations form a group ¢ (M, g). Let .7 be a space of
C tensor fields of some fixed type over M. For example, we can take 2-forms or
trace-free symmetric covariant three-tensors. We have representations ([2]) defined
by

(2.1) «(M,g) 2% End 7, Ul(T)=Lr+aw and

C(M,g) 2% Aut 7, uq(h) = Q-

for a € C.
Note that if a conformal vector field T integrates to a one-parameter group of
global conformal transformation {h.}, then

d
{Ua(T)9}(2) = —| _ {ualh-c)d}(z).
€ le=0
In this sense, U, is the infinitesimal representation corresponding to u,.
A differential operator D : C*°(M) — C°(M) is said to be infinitesimally confor-
mally covariant of bidegree (a,b) if

DU.(T)¢ = Up(T) D¢
for all T € ¢(M, g) and D is said to be conformally covariant of bidegree (a,b) if
Dug(h)p = up(h) D¢

for all h € ¥ (M, g).

To relate conformal covariance to conformal invariance, we recall that the con-
formal weight of a bundle V' with the bundle metric g,, induced from g is r if and
only if

G=09—3§, =0 g,

The tangent bundle, for instance, has conformal weight -1. Let us denote a bundle
V with conformal weight r by V. Then we can impose new a conformal weight s on
V" by taking the tensor product of it with the bundle I(*=")/" of scalar ((s —7)/n)-
densities ([3]). Now if we look at an operator of bidegree (a, b) as an operator from
the bundle with conformal weight —a to the bundle with conformal weight —b, the
operator becomes conformally invariant.
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As an example, let us consider the conformal Laplacian on M:

n—2
Y =A+ ——Scal
+4(n_1)Sca,

where A = —g%V,V,, and Scal is the scalar curvature. Note that Y : C>°(M) —
C*>°(M) is conformally covariant of bidegree ((n —2)/2, (n + 2)/2). That is,

n—2

2),

where Y is Y evaluated in g and M(Q#) is multiplication by Q7. If we let
V = C*(M) and view Y as an operator

Y =0 " Y u(Q

n—2

n+2
Y. VT VT

we have, for ¢ € V*HT%,
Yo=Yo,
where }A/, (E, and }//\gb are Y, ¢, and Y ¢ computed in g, respectively.

3. Dominant Weights

Let A be a dominant weight of an irreducible Spin(n) representation. That is,
let
A=0,..., ) eZu(1/2+2), 1=[n/2

satisfy the inequality constraint (dominant condition)

)\122)\120, 7”L0dd7
)\1 Z...Z)\l,1 Z|)\l|7 n evel.

Here, X is identified with the highest weight of the irreducible representation of
Spin(n) ([10]). We shall denote by V(\) the representation with the highest weight
A. Those A € Z' are exactly the representations that factor through SO(n). For
example, V(1,0,...,0) and V(1,1,1,0,...,0) are the defining representation and
the three-form representation of SO(n), respectively and V(%, cee %) is the spinor
representation in the odd dimensional case.

If M is an n-dimensional smooth manifold with Spin(n) structure and F is the
bundle of spin frames, we denote by V() the associated vector bundle F x5 V(A).

4. Intertwining Relation

Let G = Spiny(n + 1,1) be the identity component of the Spin(n + 1,1) and
g = £+ 5 be a Cartan decomposition of the Lie algebra g of G. Then, in an Iwasawa
decomposition G = K AN, the maximal compact subgroup K of G is isomorphic to
Spin(n 4+ 1). Let M be the centralizer of the Lie algebra a of A in K. Then M is
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isomorphic to Spin(n) and P = M AN is a maximal parabolic subgroup of G. Note
that G/P = K/M is diffeomorphic to the sphere S™ ([7]).

Let V(X) be a finite dimensional irreducible representation of M with maximum
weight A. Consider the G module &(G; A, v) of C* functions

F:G — V(\) with F(gman) =a ""?X(m)'F(g), g€ G mée M,a € Anéc N,

where p is half the sum of the positive (g, a) roots. This space is in one-to-one cor-
respondence with the space of smooth sections of V()), the K module &(K; A xnnr)
of C'*° functions

f: K — V() with f(km) = AX(m)~ ' f(k), k€ K,mée M.
The K-finite subspace Ex(G; A\, v) Xk Ex(K; A knnm) is defined as
(4.1) P Vi,
aEk,aiA

where K is the set of dominant Spin(n 4 1) weights and V(«) is the a-isotypic
component satisfying the classical branching rule of K and M ([1]):
>N > a2 > >N 2> gl n odd

al MNiff oy — A\ € Z and
> AN >a > > o1 > o > ||, neven.

The conformal action of G and its infinitesimal representation correspond to those
in (2.1).

Let A = Ay, be an intertwinor of order 2r of the (g, K') representation. If X € g
with its conformal factor w, A is a K-map satisfying the intertwining relation

(4.2) A(ix+(g—r)w):(EX+(g+r)w)A,

where Ly is the reduced Lie derivative ([3]), Lx = Lx + (I — m)w on tensors of

( Tf’L )—type (I contravariant and m covariant).

5. Higher Spin Operators

Let V() be an irreducible associated vector bundle (3). The covariant derivative
takes sections of V() to sections of ([1])

(5.1) T*"M ®@V(A) Zspinny V() & - @ V(un),
where

Wi = A =Eeq, forsomea € {1,...,[n/2]}
or

Hi = A if n is odd and )\[n/2] # 0.
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Here e, is (0,...,0,1,0,...,0) with “1” in the a-th slot.
Let us consider the fundamental tensor-spinor ([6])
(5.2) v:T*S"™ — End(X)
satisfying the Clifford relation
(5.3) Yivi + 57 = —2gi51ds,
where ¥ is the spinor bundle:

Y =V(1/2,...,1/2), n odd,
S=%, 0%, Yi=V(1/2...,1/2,£1/2), n even.

The higher spin operators are compositions of projections and the above covari-
ant derivatives (5.1):

v(1+k,l, l>ﬁv(l+k,l,...l>, n odd

2 2777772 2 2 2
1 1 1 .1 1 1 1 1
—+k = ..., =, k= —+k = ..., =, F=
V(2+ ,2, 72’ 2)_>V<2+ 727 727:|:2>7 n even
for k=1,2,...,

Taking a normalization, we can express these operators as

2k

b
m%alv Pay---ap)bs

(5.4) (TR(k)cp)al...a,c = vabgoal...ak —

where indices enclosed in parentheses are symmetrized and ¢ is a spinor-valued
trace-free symmetric k-tensor annihilated by Clifford multiplication. i.e.

(55) 7a1¢ala2"'ak =0.

Case I: n odd

R*) is an intertwinor of order 1 with < 2 ) tensor type. So (4.2) becomes

(k) n_1_ _ n 1 (k)
0 (e (21 8)0) = (ex s (24 1))

Now we specialize to the case of S™ with its standard metric. Let Y =sinpd, be
a conformal vector field and w = cos p its corresponding conformal factor ([12]).

The following lemma compares the Lie derivative and covariant derivative on
the spinor-valued k-tensor bundle on S™.
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Lemma 5.1. For any spinor-k-tensor @,

((Ly - VY)(I))al---ak = kw@al...ak .

Proof. Note that for a 1-form 7 and a vector field X,

(Ly = Vy)n, X) ==, (Ly — Vy)X),

since Ly — Vy Kkills scalar functions. But by the symmetry of the Riemannian
connection,
[Y,X] - VyX =-VxY.

We conclude that
(Ly = Vy)n=n,VY),

where in the last expression, (-,-) is the pairing of a 1-form with the contravariant
1
part of a ( 1 )—tensor:

(Ly = Vy)nx =n,VaY*r
Since Y is a conformal vector field,
(V) = (V¥ + (T¥i)iasg = (g + 3% ) = g
where (Y})a = gagY?, the contraction of Y with the metric tensor g. Thus
((Ly = Vy)n)x =wnx.

Since Ly — Vy is a derivation, for any k-tensor g, ...,

(Ly = Vy)P)ayar = kwPay - ay-
On the spinor bundle 3, on the other hand, ([11, eq(16)])

Ly = Vy = =1V Yy’ = —1(dY)ay™y" = 0,

where 7 is the fundamental tensor-spinor. Thus the lemma follows. O
The spectrum generating relation is given in the following lemma.

Lemma 5.2. On spinor-tensors of any type,
. n
[V*V,w] = 2 (vy + §w) :

where [,] is the operator commutator.
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Proof. If ¢ is any smooth section of a tensor-spinor bundle, then
[V*V,w]p = (Aw)p — 2(dw)*Vap = (nw 4+ 2Y V4 ) = (nw + 2Vy) ¢.
O

Thus, by Lemma 5.1 and Lemma 5.2, the intertwining relation (4.2) on spinor-
k-tensors becomes

1 1 1 1
F) [ Zw* - = [ 2w+ - (k)
(5.6) R (2[V V,w] 2w) (2[V V,w] + 2w) R
Now we look at the Spin(n+1) typesin (4.1) occurring over V(1/24k,1/2,...,1/2).
Define
. 1 o1 1 1 e .
Ve(4,q) .—V(§+k+],§+q,§,...,§,§), e==+1,¢=0,1,...,k, j=0,1,....

[=5]

For ¢ € V.(j,q), we have ([7])
wp eV (j+1,9) 0V (j—1,9) ®V(j,g +1) ®V(j,q—1) ©V_(4,q).

Let @ = V.(j,q) and 8 be one of the summands in the above direct sum. We
consider the compressed intertwining relation (5.6) between « and 3:

1 * * 1 * *
Hp - 3 (V*V|g = V*'V]o = 1) - |pwlap = 3 (V*V|g = V*VI]a + 1) - ta - |pwlasp,

where p, and pg are eigenvalues of R*) on the isotypic summands o and £, | BW|a
is the projection of w onto the summand 8, and V*V|, and V*V|z are evaluations
of V*V on the summands « and 3 respectively.

Canceling |gw|q from both sides and computing V*V ([1]), we get p1g/fta tran-
sition quantities.

With respect to the diagram of the Spin(n + 1) summands based at V1 (j, q)

Vi(j+1,q) Vi(j,q+1)
T S
Vl(jv Q) — Vfl(jaq)

TN
Vl(j_LQ) Vl(juq_l)

we get the corresponding diagram of the transition quantities pg/

(J+1)/J (n+2q)/(n+2q —2)
T a
(5.7) o — -1
N

(J-1)/J (n+2q—4)/(n+2q — 2)
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where J = n/2+k+j. Thus the eigenvalue of R%*) on V1 (1/2+k, 1/2+k) completely
determines the spectra of R,
Let A* and Symk be the spaces of k-forms and symmetric k-tensors, respectively.

Theorem 5.3. For ® € (X ® A*) U (X ® Sym”) with v ®4,ay..a, =0,

-1
V20,0, = <v*v + % + k) Boroars
where Y = v%V,.
Proof. We write Vo = YN (Vp Vo + Rap)® = (—W2 +2V*V 4+ 29 R, )@ using
the Clifford relation (5.3), where Ry, = [Va, V3] is the spin curvature ([6]). So
Y20 = (V*V + 1/2799"Ry)®. And

'Ya'YbIRabq)al“'ak = FYa’Yb(Wab(I)al"'ak - Rualabq)l/a2"'ak - Ryakabq)al"'ak71v>a

where Wy, = —1/4R . apy"™y" is the action on spinors and Ry is the Riemann
curvature tensor. On S, since Revay = GuaGvp — GrpGurs

nin —1)
2

FYa'YbRuaiabq)al"'ai—ll’az’+1'~ak = ('Yyﬁyai - ’Yai’yy)(bal"'ai—lyai+l"'ak
(297" — 20 ) Bar v v
=20,

VA Wap =

and the theorem follows. O

Remark 5.4. When k£ = 0, this is the classical Lichnerowicz formula on the spinor
bundle over S™. In general, v*y*W,;, = Scal/2, where Scal is the scalar curvature.

Notice that R*) reduces to ¥ on V;(1/2 4 k,1/2 + k) since it is of diverging
type. That is, if ¢ € V1(1/2 + k,1/2 4+ k), then ¢ = V*¢ for some section ¢ over
V(1/2+k,3/2,1/2,...,1/2).

We can now describe the spectra of the higher spin operators.

Theorem 5.5. The operator R%*) acts as a constant

n+2¢—2 /n . 1 o1
S S ) Vo (=4k+7= ,
S nt2k-2 (2+ i) oom €<2+ +32+q)

e=+1,¢=0,1,...,k j=0,1,....

Proof. This is a direct consequence of Theorem 5.3 together with the diagram of
transition quantities (5.7). O
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Remark 5.6. When k£ = 0,1, we get eigenvalues of the Dirac and the Rarita-
Schwinger operators, respectively ([4]).

Case II: n even

In this case R(*) changes chirality of spinors. That is,

1 1 1 ¢ 1 1 1 €
k) .y (= - = v(-= - T _c _
R : (2+k,2,...,2,2>—> (2+/€,2,... ), e==1.

Consider ([3]) the commutative diagram.

V(1/2+k,1/2,...,1/2,—6/2) i) V(1/2+k,1/2,...,1/2,—6/2)
TG I+ G*
Iy

V(1/2+k,1/2,...,1/2,¢/2) 5 V(1/24k,1/2,...,1/2,£/2)

Here G is the generalized gradient (projection of the covariant derivative action,
(5.1), G* is the adjoint of G, and I, I5 are intertwinors :

. —9 5 P
Il <£/X+ (HT> w> = <LX+ (%) w> Il and
" P - _9
L Lx + nt w|=(Lx + n—< w | Is.
2 2
Since (R*))? is a constant multiple of G*G, we just need the ratios of eigenvalues
of I to Ir. But I is a constant multiple of 1/1;. Thus (R¥)2 = ¢- (I;)? for some

constant c.
The following lemma determines the constant c.

Lemma 5.7. (R®)2 =Y on V(1/2+k,1/2+k,1/2,...,1/2).
Proof. Let ¢ € V(1/2 +k,1/2+ k,1/2,...,1/2). So ¢ = V*¢ for some ¢ over
V(1/24k,3/2,1/2,...,¢/2). Since R = YV on V(1/2+k,1/24+k,1/2,...,1/2),

2k

IR(k) 2 ai-ap — : aiar T a1 o
( )<p1 k le k 7’L+2k—2

7(&1 vbW <Pa2---ak)b-
But

va <Pa2~~~akb = ")/C(VCVb + Rbc)wba2,“ak = ’ycjzbc@ba2...ak

b b b b
= VC(WZ)CQP az-ap R bePras---ay — Ryagbc(p vas--ar 0T T Ruakbcsp ag---ak,lu)
= constant - YQeay--ay
= O,

where Ry is the spin curvature. Hence the claim follows. ]
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We define
. 1 1 1

(=]

For ¢ € V(j4,q), we have ([7])
With respect to the diagram

V(i +1,9) V(j,q+1)
1 Ve
V(j,q)
1 N
V(i —1,9) V(j,q—1)

we get
(J+1)/J (n+2q)/(n+2q— 2)
T S

I ¢
(J-=1)/J (n+2¢—4)/(n+2q — 2)

where J =n/2 + k + j.
Thus we have

Theorem 5.8. The operator (R%¥))? acts as a constant

2

n+2¢g—2 /n . 1 o1 .
nreams (L ) V(z4k+j = Lq=0,1,...k j=01,. ...
[n+2k—2 (2+ H] on <2+ +32+q> ¢ J

6. Spin Operators over Spinor-forms

In this section, we consider the conformally invariant spin operators on
V(3/2,...,3/2,1/2,...,e/2) where ¢ = 1 for n odd, ¢ = +1 for n even, and
~——

k
0 < k < n/2. These operators satisfy the intertwining relation (4.2). By Lemma
5.1 and 5.2, we have, for an order 2r intertwinor A = A,,,

A (%[V*V,w] - m> - (%[V*V,w] +m> A

Case I: n odd and k=0
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Let V.(j) =V(1/2+4,1/2,...,1/2,¢/2) for ¢ = £1. With respect to the following
diagram

V(i +1)

Vs(.] - 1)

we get

(J+1/2+n)/(J+1/2—-7)

<— 0 —

(=J+1/2+7)/(-TJ+1/2—71)
where J =n/2 + j. Choosing a normalization Py o) = €; We have

Theorem 6.1. The unique spectral function Z:(r,j) on V.(j) is up to normalization

D(J+ 1 +r)I(
D(J+ 2 —r)IY(

Ze(r,j) =¢- e=41, j=0,1,2,....

If2r =1, 2.(1/2,j)=¢-J -2 = 2. Y on V.(j) is a constant multiple of the
Dirac operator. As a consequence of the spectral function in the theorem, we get

Corollary 6.2. ([8]) The differential operator Dojyq : ¥ — X defined by
! 2
Day1:=Y - H(W - %)
p=1

1s conformally invariant of order 21 + 1.

Proof. Dyj4q acts as e - J - Hi):l(J2 — p?) on V.(j) so it is a constant multiple of
Z.(+1/2, ). 0

Case II: nodd and k > 1

Let, for e = +1,

Vo(3/244,3/2,....3/2,1/2+¢,1/2,...,1/2,¢/2), k< (n—1)/2
. ——
VE(]’Q) = (k+1)st
Ve(3/2+5,3/2,...,3/2,6(1/2+q), k=(n-1)/2.
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With respect to the diagram

V(G +1)
T

Vo(,0) < [V-G:D)] - VoG
1
Vs(.] - 1)

we get
(J+i+n)/(J+L1-n)

(n—2k+1—2r)/(n—2k+1+2r) « I

i—J+%—ﬂ

where J =n/24 1+ j. Choosing a normalization Py 01y = €, We have

(=T + 4+ )/

Theorem 6.3. The unique spectral function Z:(r, j,q) on Ve(4,q) is up to normal-

1zation

n—2k+1+22¢—1)r I(J+35+7r0I(
n—2k+1+2r D(J+ 3 —r)I(

e=+41, ¢=0,1, j=0,1,2,....

ZE(T,j,Q) =é&-

Remark 6.4. If 2r = 1 and k = 1, Z.(1/2,j,q) = - 2D . . 2. = 2. R(1)
on V.(j,q). Here R is the Rarita-Schwinger operator (5.4).
To get all odd order conformally invariant differential operators for k > 1, we

consider the following convenient operators ([4]) on spinor-forms:

[
(_1) vﬂiwa()"'ai—lawrl“'ak?

Ez
S
~—
N
S)
Il
-

eay

=0
(&p)ag ap +— —vb(pbaz,,,ak7
k
(e(V)P)ag-ai = Z(—l)z%icpao...aiflaiﬂ...ak,
=0
(L(V)®)az--ar =7 Pbag--ar
(DP)ay.ap = ((¥)d+ de(7)P)ay.ar = —(02(7) +£(1)0)P)ar-ar, = ¥V Pay..-ay -

The operator

n—2k+4 -~ n—2k, - ~ n—2k—4 <
ey O _

Py = 5 (V)d + —5—(de(y) = 9e(7)) = ————<(7)d
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on ¥ ® AF restricted to
={peZ® NF | Y** Paraz--ar = 0},

is conformally invariant on T*.

Remark 6.5. (1/(n — 2k +2)) - Plpr = D+ (2/(n — 2k +2)) - £(7)4 is the Dirac
and Rarita-Schwinger operators when k& = 0, 1, respectively.

Since Py = (n — 2k +2)Y on V.(j,1), by Theorems 5.3 and 6.3,
P, actsas e-(n—2k+2q)-J onV:(j,q), ¢g=0,1.

Consider now the operator Tj_; : TF=1 — T* defined by

. 1 | )
Tooa = gd+ O 2 D)

T k(- 20k — 1))

This is the orthogonal projection of V onto T* summand (1/k - J;‘ipl in [6]):

T 5 TS" @ T g 2@ T @ T @20, 2<k < (n-2)/2.

where ZF~1 =9pin(n) V(g, %, cee %, %, . %) Note also that the formal adjoint of

|

k-2
Tp1 is Ty = 5. When k = 1, (Toh)a = Vab + %”yavﬁ is the twistor operator
([6])

Lemma 6.6. The second order operator Ty_1T}_, acts as a scalar

0 on Ve(j,1) and
(n—2k+1)(L? - (n/2 —k+1)%) .
k(n — 2k + 2) on V= (3;0).

Proof. Ty_1T}_, clearly annihilates V.(j,1) type. Assume that Tp_1T} ;¢ = Ap
for ¢ € V.(4,0). Then Ty Typ1Ty_ 10 = AT;_ ¢ and T}, € V.(j, 1) over TF~1,
So we take 1) € V.(j,1) over T*~1 and compute T} | Tj—17. We get the following,
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where we write (a4 for Yag-a;_ya;41--ax_; -

Tl;kflTk—lwal Qg—1

k—1
—_ 1 141 ao 1 a0
Tk ;( 1) (v Vaiz/][an] + n_ ok + 2V Vazy“ﬁ[an]

k-1
1 " 1 2 1 i a
=5 (VY e e+ D Vb
=1
A
1 k—1
- -1 ’i+lva0 - .
+ k(n—2k+2) ( ) i 1y71/}[a.1]

=1

B
For A, we compute
(_1)i+1vaovaiw[a:i] = (_1)i+1(vlli Ve + Jzaoai)w[a:i]
= (_1)i+15€a0ai¢[a:i] = (n —k+ 3/2)1/1111"'%717

where R is the spin curvature (Theorem 5.3). Similar computation shows that
B = 0. Thus, on V.(j,1) over TF=1 Ty | Tj_q is

1 3 1 2
- * —k+-](k-1) —— .
k<vv+<" +2)( ) n—2k+2v>

By Theorem 5.3, this proves our claim. O

Putting the above observations together, we have

Theorem 6.7. The differential operator Dajy1 1 : TF — T* defined by

l
1 1
D =— P — = P2_Zid—c Tu TV
wisi= s L (g e T i)
where
16ki?
C; =

(n—=2k+2)(n—2k+2—2i)(n — 2k + 2+ 2i)
is conformally invariant of order 21 + 1.

Proof. The operator D11, acts as a constant

J(J?=12).. (J2 = 1?) on V.(j,1)

n—2k -2l 5 49 9 9 ,

Thus by the Theorem 6.3, Dgj41 1 is a constant multiple of Z.(I + 1/2, j, q). O
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Case III: n even

Let E = /=1v'(1 — 2e(dp)i(0p)) where v = ~(dp) from (5.2), ¢ is the exte-
rior multiplication, and ¢ is the interior multiplication. E changes chairality of the
spinor, since v : ¥4 — Xz, Tt is readily verified that E? = id. And for ® € T,

FYJ(E(I))JQ% = \/—_1’yj’}/1((1)ji2...ik - 25]1(1)112%)
= V17" = 29")(®jiy i, — 20 P1iz-ir)
= V=127 @iy, — 291 @iy, + 497 Prieiy)
=0.
Thus E : T — 'H":“F with E?2 =id. On T). = ¥4, E = /—1~'. We also compute
Ly E = V=1(Ly7" -(1 = 2¢(dp)u(9p)) +~" Ly (1 — 2e(dp)e(p)))
——
=0
= V=17"Ly (1 = 2¢(dp)u(dp)) = —2v/=17" Lye(dp)u(p))
— oIy {e(dp)u([Y; D)) + (d(Y ))u(Dp)}
= —2v/ =1y (= cos pe(dp)i(dp) + cos pe(dp)L(dp)) = 0.

Thus the intertwining relation for the exchanged operator E'A is exactly the same
as that of A (4.2).

EA(EX+(g—r)w) = (EX+(g+r)w)EA.

We first consider EA : ¥y — Yi. Let V(j) = V(1/2+ 4,1/2,...,1/2). With
respect to the following diagram

vo$1> (J+1/2+47)/(J+1/2—7)
T
V(5) we get .
1 1
V(G —1) (=J+1/2+7)/(=T+1/2—71)

where J =n/2 + j. Choosing a normalization Py, = €, We have

Theorem 6.8. The unique spectral function Z(r,j) on V.(j) is up to normalization
L(J+i4+n0(2+35-17)
L(J+4i-nT(EZ+3+7r)

Z(r,j) = j=0,1,2,....

Corollary 6.9. ([8]) The differential operator Doi1 : ¥4 — X+ defined by

!
Doy =Y - H(W2 —p?): Ty — PR

p=1
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is conformally invariant of order 21 + 1.

Proof. EY ~H;:1(Y72 —p?) is a constant multiple of Z(1+1/2,5). So Daj41 : X4 —
Y+ is a differential intertwinor as well. (I

Next we consider EA : TE — Tk for k > 1. Let V(j,q) = V(3/2 +
5,3/2,...,3/2,1/2+ q,1/2,...,1/2). With respect to the diagram
——

(k+1)st

. (J+3+7)
V(j+1,1) i)

T T

V(G0 «  [V(,1) we get 75313’;1};;?; « .
v (Jil )
V(i —-1,1 (ks aid]
G-11) (—Tin)

where J =n/2+4 1+ j. Choosing a normalization Pyq) = 1, we have
Theorem 6.10. The unique spectral function Z(r,j,q) on V(j,q) is up to normal-
1zation
Zlria) n—2k+1422¢—1)r DJ+3+nT(2+3-7)
s Js = ' )
4 n—2k+1+2r D(J+3—rD(%+32+7)
g=0,1, j=0,1,2,....

|3
o

The proof of Lemma 5.7 also shows that P? is a constant multiple of W2 on
V(j,1). Thus P? acts as

(n—2k+2¢)°-J> onV(j,q), ¢=0,1

Theorem 6.11. The differential operator Dayy1 : TH — T’% defined by

l
1 1
D = —PF — = P2i?iid—¢ T T
204+1,k n—2k+2 kE((TL—2k+2)2 k vl & k—1 k—1>7
where
16ki*
C; =

(n—=2k+2)(n—2k+2—2i)(n — 2k + 2+ 2i)
is conformally invariant of order 21 + 1.

Proof. The operator

l
1 1

.  EP — P2 ?id—c; T T}

n—2k—|—2 kﬂ<(n_2k+2)2 k (3 1 C k—1 kl)
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is a constant multiple of Z(I + 1/2,¢) in Theorem 6.10. O

To show an example of the theorem, let us take Kk =1 and [ = 1. Then we get

16

1 1
D3y =P (=P —id————TOT | .
BT (n2 1! n(n —2)(n + 2) 0 0)

The third order conformally invariant differential operator S3 on the twistor bundle
(T* for n odd and TL for n even) over a general curved manifold shown in [5] is

_ n+2_ 4 4 .
(S3S0)1 - ({ 4TL2 Pl TL(?’L—Z)TOTO Pl}@)l‘i‘LOT,

where

+2 ) ) . )
LOT =~ "TJWJ% + Vi Vi + (n + 2ViFnVip; + (n + 1)V Vie;

nn+2)_ . : ) n .
- %V]kwvg‘% + (n = )V*.Vip; + VIl Vi, + §(V]J)”Yi80j
n(n + 2 B .
- %(W )i + (Vi ;.
Here Seal S
ca r—Jg
J= n—1)’ V= o ik =Y,

where Scal is the scalar curvature, r is the Ricci curvature, g is the metric tensor,
and ;1 is the skew-symmetrization of ~;y;v, over i, j, k.

n+2 n(n+2)

On the standard sphere, LOT simplifies to — TPl. Thus S5 = 1 D3 ;.
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