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Abstract. In this paper, we introduce two new geometric constants related to the heights
of triangles: ∆H(X) and ∆h(X, I). We also propose two new geometric constants, ∆m(X)
and ∆M (X), related to the midlines of equilateral triangles, and discuss the relation be-
tween the heights and midlines in equilateral triangles. We give estimates for these ge-
ometric constants in terms of other geometric parameters, and the geometric constants
are used to discuss geometric properties such as uniform non-squareness, uniform normal
structure, and the fixed point property.

1. Introduction

Geometric constants has been widely studied, as they make it easier to deal with cer-
tain problems in Banach space. They do this because they not only essentially reflect the
geometric properties of a space X, but also enables us to study the geometric properties
of Banach spaces quantitatively. For example, the modulus of convexity introduced by
Clarkson [7] can be used to characterize uniformly convex spaces, the modulus of smooth-
ness proposed by Day [9] can be used to characterize uniformly smooth spaces. We refer
the readers to the papers [2–4, 13–15, 22, 28] about the modulus of convexity and the
modulus of smoothness.

It is well known that the height and midline of a triangle play an important role in
Euclidean geometry, as does the geometric theory of Banach spaces. In 1997, Alsina et
al. obtained a collection of new characterizations of inner product spaces by using well-
known formulas about the height of a triangle in [1]. In 2009, Ni et al. [27] proposed a
new geometric constant h(X) related to the heights of equilateral triangles, which can be
used to characterize the uniformly non-square spaces. In Functional Analysis, various fine
geometric properties of finite dimensional spaces (i.e. Minkowski spaces) play important
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roles in the so-called local theory of Banach spaces (see [24, 30]). In 2001, Martini et
al. [23] obtained the upper bounds of medians for equilateral triangles in any Minkowski
planes (i.e. two-dimensional Minkowski spaces).

Inspired by the excellent works mentioned above, in this paper, we will introduce some
geometric constants related to the heights and midlines of triangles in non-trivial Banach
spaces, and use them to study some properties of Banach spaces. This paper is organized
in the following way:

In Section 2, we recall some fundamental concepts and conclusions that we need to
use in subsequent discussions.

In Section 3, we consider the following three constants:

∆h(X) = inf

{

inf
λ∈R

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

,

∆H(X) = sup

{

inf
λ∈R

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

,

∆h(X, I) = inf

{

inf
λ∈R

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, x ⊥I y

}

.

The first one is the constant h(X) proposed by Ni et al. [27], and the latter two are
proposed by us. These three constants are closely related to the height of the triangle.
The two constants ∆h(X) and ∆H(X) are related to the heights of equilateral triangles,
and the constant ∆h(X, I) is related to the heights on the hypotenuses of right triangles.
The bounds of these constants and the values of these constants for some specific spaces
will be given. Further, some estimates of these constants in terms of other constants
will also be discussed. In particular, the relationships between these constants and some
geometric properties of Banach spaces will be studied, including uniform non-squareness,
uniform convexity, strict convexity and uniform normal structure.

In Section 4, we introduce the following third constants:

∆m(X) = inf

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

,

∆M (X) = sup

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

,

D∆(X) = sup

{

‖x+ y‖
infλ∈[0,1] ‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1

}

.

The first two constants are both related to the midlines of equilateral triangles. The bounds
of these two constants and the values of these constants for some specific spaces will be
given. Further, a necessary and sufficient condition and a sufficient condition for uniformly
non-square space will be established. Finally, we introduce a new constant D∆(X) related
to the difference between the midilines and heights in equilateral triangles.

2. Preliminaries

Throught the paper, let X be a non-trivial Banach space, that is, dimX ≥ 2, and
using SX and BX to represent the unit sphere and closed unit ball of X, respectively.

Recall that the Banach space X is called uniformly non-square [17], if there exists a

constant δ ∈ (0, 1) such that for any x, y ∈ SX , either ‖x+y‖
2

≤ 1− δ or ‖x−y‖
2

≤ 1− δ.
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The constants

J(X) = sup{min{‖x + y‖, ‖x− y‖} : x, y ∈ SX}

S(X) = inf{max{‖x+ y‖, ‖x− y‖} : x, y ∈ SX}
are defined by Gao [11] in order to measure the degree of uniform non-squareness, and
usually called the James constant and Schäffer constant, respectively.

Later, the equivalent definitions of James constant and Schäffer constant

J(X) = sup{‖x+ y‖ : x, y ∈ SX , ‖x+ y‖ = ‖x− y‖}

S(X) = inf{‖x+ y‖ : x, y ∈ SX , ‖x+ y‖ = ‖x− y‖}
are introduced by He and Cui [16].

Now let us collect some properties of the two constants for non-trivial Banach spaces
(see [16, 20, 21]):

(1) 1 ≤ S(X) ≤
√
2 ≤ J(X) ≤ 2.

(2) J(X)S(X) = 2.
(3) Let X be a Banach space with dimX ≥ 3. Then J(X) =

√
2 if and only if X is a

Hilbert space.
(4) X is uniformly non-square if and only if either J(X) < 2 or S(X) > 1.
Recall that the Banach space X is called uniformly convex [7], if, for any ǫ > 0, there

exists δ > 0, such that for any x, y ∈ SX with ‖x− y‖ > ǫ, then ‖x+y

2
‖ < 1− δ.

The Clarkson modulus of convexity of a Banach space X

δX(ǫ) = inf

{

1− ‖x+ y‖
2

: x, y ∈ SX , ‖x− y‖ = ǫ

}

, (0 ≤ ǫ ≤ 2)

was proposed in [7] and can be used to characterize uniformly convex space.
Some famous conclusions about δX(ǫ) are listed in [13, 22, 28]:
(1) For all Banach spaces X, then

δX(ǫ) ≤ 1−
√

1− ǫ2

4
.

(2) For any x, y ∈ X such that ‖x‖2 + ‖y‖2 = 2, then

‖x+ y‖2 ≤ 4− 4δX

(‖x− y‖
2

)

.

(3) X is uniformly non-square if and only if there exists ǫ ∈ (0, 2) such that δX(ǫ) > 0.
In order to get a better understanding of some geometric properties of Banach spaces,

in [14] Gurariy introduced the βX modulus of as the function

βX(ǫ) = inf

{

1− inf
a∈[0,1]

‖ax+ (1− a)y‖ : x, y ∈ SX , ‖x− y‖ = ǫ

}

, (0 ≤ ǫ ≤ 2)

and the various properties of this constant were given in [3, 15]:
(1) For any ǫ ∈ [0, 2], δX(ǫ) ≤ βX(ǫ) ≤ 2δX(ǫ).
(2) Let X be a Hilbert space, then for each ǫ ∈ [0, 2],

βX(ǫ) = 1−
(

1− ǫ2

4

)
1

2

.
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(3) Banach space X is uniformly convex if and only if βX(ǫ) > 0, for any ǫ ∈ [0, 2].
Recall that Banach space X is said to be uniformly smooth [9], whenever given 0 <

ǫ ≤ 2, there exists δ > 0 such that if x ∈ SX and ‖y‖ ≤ δ, then

‖x+ y‖+ ‖x− y‖ < 2 + ǫ‖y‖.

In order to study uniformly smooth space, the modulus of smoothness ρX(τ ) :
[0,+∞) → [0,+∞) was introduced by Day [9] as follows:

ρX(τ ) = sup

{

‖x+ τy‖+ ‖x− τy‖
2

− 1 : x, y ∈ SX

}

, (τ ≥ 0).

The following function ρ(ǫ) : [0, 2] → [0, 1], which we call it the modulus of smoothness
and can be used to characterize uniformly smooth space, was introduced by Banaś [2] as
follows:

ρ(ǫ) = sup

{

1− ‖x+ y‖
2

: x, y ∈ SX , ‖x− y‖ = ǫ

}

, (0 ≤ ǫ ≤ 2).

Later, Baronti and Papini [4] considered the following related modulus:

ρ
′(ǫ) = sup {1− ‖λx+ (1− λ)y‖ : x, y ∈ SX , ‖x− y‖ = ǫ, λ ∈ [0, 1]} , (0 ≤ ǫ ≤ 2).

Some important conclusions about ρ(ǫ) and ρ′(ǫ) are listed as follows [4]:
(1) For all Banach space X, then

ρ(ǫ) ≥ 1−
√

1− ǫ2

4
.

(2) X is not uniformly non-square if and only if ρ′(1) = 1
2
.

(3) X is not uniformly non-square if and only if ρ(1) = 1
2
.

3. The Heights of Triangles
In this section, we will study two types of constants. The first type is closely related

to the heights of equilateral triangles, and the second type is related to the heights on the
hypotenuses of right triangles.

3.1. The heights of equilateral triangles

Ni et al. [27] introduced the following constant

∆h(X) = inf

{

inf
λ∈R

‖λx+ (1− λy)‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

.

Inspired by ∆h(X), we consider the following constant

∆H(X) = sup

{

inf
λ∈R

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

.

Next, we give the equivalent forms of ∆h(X) and ∆H(X), which will help us under-
stand their geometric meanings.

Proposition 3.1. Let X be a Banach space. Then

(1) ∆h(X) = inf

{

inf
λ∈[0,1]

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

,
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(2) ∆H(X) = sup

{

inf
λ∈[0,1]

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

.

Proof. (1) First, for any x, y ∈ SX and λ ∈ [0, 1], we can get

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ = 1.

Second, for any x, y ∈ SX and λ ∈ [1,+∞], we can obtain

‖λx+ (1− λ)y‖ ≥ λ‖x‖ − (λ− 1)‖y‖ = 1.

Further, for any x, y ∈ SX and λ ∈ [−∞, 0], we can also obtain

‖λx+ (1− λ)y‖ ≥ ||λ| − |1− λ|| = 1.

Thus, we can conclude

∆h(X) = inf

{

inf
λ∈R

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

= inf

{

inf
λ∈[0,1]

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

.

(2) The proof is similar to (1), and we omit it. 2

The geometric meanings of ∆h(X) and ∆H(X) : consider the Euclidean plane with−→
OA = x,

−−→
OB = y, then we have

−→
BA = x − y. Assume that

−−→
OC⊥−→

AB, the geometric
explanations of ∆h(X) and ∆H(X) are the infimum and supremun of the heights on the

side
−→
AB on the equilateral triangles ∆OAB, respectively.

o

A

B

C

x

y

Figure 1. Geometric explanations of ∆h(X) and ∆H(X).

3.1.1. The bounds of ∆h(X) and ∆H(X)
First, we give the bounds of ∆h(X) and ∆H(X).

Proposition 3.2. Let X be a Banach space. Then

(1) 1
2
≤ ∆h(X) ≤

√
3

2
,

(2)
√
3− 1 ≤ ∆H(X) ≤ 1.

Proof. (1) In [27], Ni et al. have obtained ∆h(X) ≥ 1
2
. Moreover, it is clear that

∆h(X) ≤ inf

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = ‖x− y‖ = 1

}

= 1− ρ(1).
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Then, we can obtain

∆h(X) ≤ 1− ρ(1) ≤ 1−
(

1−
√

1− 12

4

)

=

√
3

2
,

which completes the proof.

(2) From the definition of ∆H(X) and βX(ǫ), we can obtain ∆H(X) = 1 − βX (1).
Since βX(ǫ) ≤ 2δX(ǫ) for any ǫ ∈ [0, 2], we see that

∆H(X) = 1− βX (1) ≥ 1− 2δX (1) ≥ 1− 2

(

1−
√

1− 12

4

)

=
√
3− 1.

Note that

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ = λ+ (1− λ) = 1,

for each λ ∈ [0, 1] and ‖x‖ = ‖y‖ = ‖x − y‖ = 1, which means that ∆H(X) ≤ 1. This
completes the proof. 2

Next, we give the values of ∆h(X) and ∆H(X) of some specific spaces. Example 3.3
and Example 3.4 illustrate that the lower bound of ∆h(X) can be reached. Example 3.5
shows that the two constants are in general different and the upper bound of ∆H(X) can
be attained. We can also obtain the exact values of ∆h(X) and ∆H(X) for Hilbert spaces
by Proposition 3.6.

Example 3.3. Let X = (R2, ‖ · ‖1). Then ∆h(X) = 1
2
.

Proof. Let x = ( 1
2
, 1
2
) and y = (− 1

2
, 1
2
). It is easy for us to obtain ‖x‖1 = ‖y‖1 = ‖x−y‖1 =

1. Then we can get
1

2
≤ ∆h(X) ≤ ‖x+ y‖1

2
=

1

2
.

Thus, we can obtain ∆h(X) = 1
2
. 2

Example 3.4. Let X = (R2, ‖ · ‖∞). Then ∆h(X) = 1
2
.

Proof. Let x = (0, 1) and y = (1, 0). It is clear that ‖x‖∞ = ‖y‖∞ = ‖x− y‖∞ = 1. Thus,
we can obtain

1

2
≤ ∆h(X) ≤ ‖x+ y‖∞

2
=

1

2
,

which means that ∆h(X) = 1
2
. 2

Example 3.5. Let X be the space R
2 endowed with the norm

‖x‖ = ‖(x1, x2)‖ =

{

‖(x1, x2)‖∞, (x1x2 ≥ 0),
‖(x1, x2)‖1, (x1x2 ≤ 0).

Then ∆h(X) = 3
4
and ∆H(X) = 1.

Proof. From Theorem 4 in [4], we can get ρ(1) = ρ′(1). Then by Example 1 in [4], we can
obtain ρ′(1) = 1

4
. Thus ∆h(X) = 1− ρ′(1) = 3

4
.

Moreover, from [3], βX(ǫ) = max
{

0, 1− 1
ǫ

}

. So, we have βX(1) = 0. Thus, we can
obtain ∆H(X) = 1− βX(1) = 1. 2

Proposition 3.6. Let X be a Hilbert space. Then ∆h(X) = ∆H(X) =
√
3
2
.
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Proof. Let x, y ∈ SX such that ‖x− y‖ = 1. Since X is a Hilbert space, then

1 = ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2 = 2− 2〈x, y〉,

which means that 〈x, y〉 = 1
2
. Then for λ ∈ [0, 1], we have

‖λx+ (1− λ)y‖2 = λ
2‖x‖2 + 2λ(1− λ)〈x, y〉+ (1− λ)2‖y‖2

= λ
2 + λ(1− λ) + (1− λ)2 = λ

2 − λ+ 1

≥ inf
λ∈[0,1]

{λ2 − λ+ 1} =
3

4
.

Then, we can conclude that ∆h(X) =
√

3
2

from Proposition 3.2 and the above inequality.
On the other hand, since ∆H(X) = 1− βX(1) and X is a Hilbert space, then we can

obtain

∆H(X) = 1− βX(1) = 1−
[

1−
(

1− 12

4

)
1

2

]

=

√
3

2
.

This completes the proof. 2

3.1.2. The estimates for ∆H(X) by other geometric constants
In this section, we will give some estimates for ∆H(X) in terms of other geometric

constants. Firstly, we give the relation between ∆H(X) and the modulus of convexity
δX(ε), the modulus of smoothness ρX(τ ).

Proposition 3.7. Let X be a finite-dimensional Banach space and δ = 2δX (1). Then

∆H(X) ≥ 1− δ + δ
2
.

Proof. Since X is a finite-dimensional Banach space, we can choose ‖x‖ = ‖y‖ = ‖x−y‖ =
1 and ‖x+ y‖ = 2− δ. Notice that if ‖z1‖ = ‖z2‖ = ‖z1 − z2‖ = 1, then ‖z1 + z2‖ ≤ 2− δ

and, in particular, ‖2x− y‖ ≤ 2− δ.
Now for λ ∈ [ 1

2
, 1], we have

‖λx+ (1− λ)y‖ = ‖λ(x+ y) + (1− 2λ)y‖
≥ λ‖x+ y‖ − (2λ− 1)‖y‖ = λ(2− δ)− 2λ+ 1 = 1− λδ,

and also
‖λx+ (1− λ)y‖ = ‖(2− λ)x− (1− λ)(2x− y)‖

≥ (2− λ)‖x‖ − (1− λ)‖2x− y‖
≥ (2− λ)− (1− λ)(2− δ) = λ(1− δ) + δ.

Thus, we can obtain

‖λx+ (1− λ)y‖ ≥ max
λ∈[ 1

2
,1]
{1− λδ, λ(1− δ) + δ},

which implies ‖λx + (1 − λ)y‖ ≥ 1 − δ + δ2. The same result is also valid for λ ∈ [0, 1
2
].

Thus, we can get

∆H(X) = sup

{

inf
λ∈[0,1]

{‖λx+ (1− λ)y‖} : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

≥ 1− δ + δ
2
.
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This completes the proof. 2

Proposition 3.8. Let X be a Banach space. Then ∆H(X)2 ≤ 1− δX( 1
2
).

Proof. Let λ = 1
2
, we have

∆H(X) ≤ sup

{‖x+ y‖
2

: ‖x‖ = ‖y‖ = ‖x− y‖ = 1

}

.

Now, let x, y ∈ SX such that ‖x− y‖ = 1. Then we can obtain ‖x‖2 + ‖y‖2 = 2. Thus, we
can get

‖x+ y‖2 ≤ 4− 4δX

(

1

2

)

,

which deduces the desired inequality. 2

Proposition 3.9. Let X be a Banach space. Then ∆H(X) ≤ ρX(1) + 1
2
.

Proof. Let λ = 1
2
, then ‖λx+ (1− λ)y‖ = ‖x+y‖

2
. Thus, we can obtain

∆H(X) ≤ sup

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = ‖x− y‖ = 1

}

.

Then, we can get

∆H(X) ≤ 1

2
sup{‖x + y‖+ ‖x− y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1} − 1

2

≤ 1

2
sup{‖x + y‖+ ‖x− y‖ : x, y ∈ SX} − 1

2

≤ ρX(1) + 1− 1

2
= ρX(1) +

1

2
,

which completes the proof. 2

In order to study the relationship between the constant ∆H(X) and the the von
Neumann-Jordan constant CNJ (X), we give the definition of the constant CNJ (X) as
follows (see [8]):

CNJ (X) = sup

{

‖x+ y‖2 + ‖x− y‖2
2(‖x‖2 + ‖y‖2) : x, y ∈ X, (x, y) 6= (0, 0)

}

.

Proposition 3.10. Let X be a Banach space. Then ∆H(X) ≤ 1
2

√

4CNJ (X)− 1.

Proof. Let λ = 1
2
, we can get

∆H(X) ≤ sup

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = ‖x− y‖ = 1

}

.

For any x, y ∈ X, we have

‖x+ y‖2 + ‖x− y‖2 ≤ 2CNJ (X)(‖x‖2 + ‖y‖2).

Hence, for any x, y ∈ SX such that ‖x− y‖ = 1, we can obtain

‖x+ y‖ ≤
√

4CNJ (X) − 1,
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then we can conclude the desired inequality by a simple calculation. 2

3.1.3. The relationships between ∆h(X), ∆H(X) and some geometric properties
of Banach spaces

In this section, we will discuss the relationships between ∆h(X), ∆H(X) and some
geometric properties of Banach spaces, including uniformly non-square, uniform convex
and strictly convex.

First, the relationships between ∆h(X), ∆H(X) and uniformly non-square are shown
as follows.

Proposition 3.11. Let X a be Banach space. Then X is uniformly non-square if and
only if ∆h(X) > 1

2
.

Proof. The Corollary 3 in [4] shows that X is not uniformly non-square if and only if
ρ′(1) = 1

2
. Since it is easy for us to obtain ∆h(X) = 1−ρ′(1), then we can get ∆h(X) = 1

2

if and only if X is not uniformly non-square. This completes the proof. 2

Remark 3.12. The above conclusion has been proved in [27], but our proof is different
and more concise.

Theorem 3.13. If ∆H(X) < 1, then X is uniformly non-square.

Proof. If X is not uniformly non-square, then for any ǫ ∈ (0, 2), we have δX(ǫ) = 0. Thus,
we can get δX(1) = 0. Since for each ǫ ∈ (0, 2), δX(ǫ) ≤ βX(ǫ) ≤ 2δX (ǫ), we can obtain
βX(1) = 0. Then, we can get ∆H(X) = 1 − βX(1) = 1. This contradicts ∆H(X) < 1,
hence X is a uniformly non-square Banach space. 2

Some sufficient conditions for fixed point property, followed from the fact proved in
[12] that uniformly non-square Banach spaces have the fixed point property, are presented
in the following corollary.

Corollary 3.14. Assume X is a Banach space with ∆h(X) > 1
2
or ∆H(X) < 1. Then X

has the fixed point property.

Proposition 3.15. If Banach space X is uniformly convex, then ∆H(X) < 1.

Proof. If X is uniformly convex, then βX(1) > 0. Thus, we can get ∆H(X) = 1−βX (1) <
1. 2

Recall that the Banach space X is called strictly convex, if for any x, y ∈ SX and
x 6= y, then ‖x + y‖ < 2. Now, we give the relationship between strict convexity and
∆H(X).

Proposition 3.16. Let X be a finite-dimensional Banach space. If ∆H(X) = 1, then X

is not strictly convex.

Proof. Assume that ∆H(X) = 1. Since the unit sphere of finite-dimensional Banach
space is compact, so there exist x, y ∈ SX satisfying ‖x − y‖ = 1, such that for any
λ ∈ [0, 1], ‖λx+(1−λ)y‖ = 1. By Hahn-Banach Theorem, there exists ‖f‖ = 1 satisfying
f(λx+ (1− λ)y) = 1. It is easily seen that f(x) = f(y) = 1, then we have

f
(x+ y

2

)

=
1

2
[f(x) + f(y)] = 1.

Thus we can obtain ‖x+y‖
2

= 1, then X is not strictly convex. 2
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3.2. The heights on the hypotenuse of right triangles
In order to introduce the new geometric constant and obtain our main results, we

firstly give some basic concepts and some related geometric constants.
Birkhoff [5] introduced Birkhoff orthogonality: x is said to be Birkhoff orthogonality

to y (denoted by x ⊥B y) if ‖x+ ty‖ ≥ ‖x‖, for any t ∈ R.
Later, James [18] introduced isosceles orthogonality: x is said to be isosceles orthog-

onality to y (denoted by x ⊥I y) if ‖x+ y‖ = ‖x− y‖.
In [19], Ji and Wu introduced a new geometric constant D(X) to give a quantitative

characterization of the difference between Birkhoff orthogonality and isosceles orthogonal-
ity as follows:

D(X) = inf

{

inf
λ∈R

‖x+ λy‖ : x, y ∈ SX , x ⊥I y

}

.

Moreover, Mizuguchi [25] further introduced a new geometric constant IB(X) to mea-
sure the difference between Birkhoff orthogonality and isosceles orthogonality in the entire
normed space X as follows:

IB(X) = inf

{

infλ∈R ‖x+ λy‖
‖x‖ : x, y ∈ X,x, y 6= 0, x ⊥I y

}

.

Motivated by the two constants ∆h(X) and ∆H(X) related to the heights of equilateral
triangles. In this section, we consider the following geometric constant

∆h(X, I) = inf

{

inf
λ∈R

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, x ⊥I y

}

and use it to study some geometric properties.
Similarly, from the proof of Proposition 3.1, we can obtain the equivalent form of

∆h(X, I):

∆h(X, I) = inf

{

inf
λ∈[0,1]

‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = 1, x ⊥I y

}

.

The geometric meaning of ∆h(X, I) is shown in Figure 2: consider the unit sphere in

the Euclidean plane with
−→
AB = x and

−→
AC = y. Suppose

−→
AB ⊥ −→

AC,
−→
AE is the height of

the hypotenuse
−−→
BC on the right triangle ∆ABC. Apparently, the ∆h(X, I) is the infimum

of the heights of the hypotenuses of the right triangles.

A

B

C

x

y

E

Figure 2. Geometric explanation of ∆h(X, I).
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Firstly, we give the following result which will help us to give the bounds of ∆h(X, I).

Proposition 3.17. Let X be a Banach space. Then
√

2
2
IB(X) ≤

√
2

2
D(X) ≤ ∆h(X, I) ≤

S(X)
2

.

Proof. Since IB(X) ≤ D(X), we can obtain the first inequality.
On the other hand, from Proposition 3.8 in [25], we have

D(X) = 2 inf

{‖λx+ (1− λ)y‖
‖x+ y‖ : x, y ∈ SX , x ⊥I y, 0 ≤ λ ≤ 1

}

.

Thus, for any x, y ∈ SX , x ⊥I y and 0 ≤ λ ≤ 1, we can get

D(X) ≤ 2
‖λx+ (1− λ)y‖

‖x+ y‖ .

Since
J(X) = sup{‖x+ y‖ : x, y ∈ SX , x ⊥I y}

and J(X) ≥
√
2, then for any x, y ∈ SX with x ⊥I y, we have

D(X) ≤
√
2‖λx+ (1− λ)y‖.

Then, we can get the second inequality.
Finally, let λ = 1

2
, then we can get

∆h(X, I) ≤ inf

{

‖x+ y‖
2

: x, y ∈ SX , x ⊥I y

}

=
S(X)

2
.

Then, we can obtain the third inequality. This completes the proof. 2

Corollary 3.18. If D(X) > 2(
√
2− 1), then J(X) < 1 +

√
2

2
.

Proof. From Proposition 3.17, if D(X) > 2(
√
2− 1), then we can obtain S(X) > 4− 2

√
2.

Applying J(X)S(X) = 2, we have

J(X) =
2

S(X)
<

2

4− 2
√
2
= 1 +

√
2

2
,

which completes the proof. 2

Remark 3.19. The Theorem 3.2 in [29] shows that if D(X) > 2(
√
2− 1), then J(X) < 2.

Since 1 +
√
2

2
< 2, we improve the Theorem 3.2 in [29] by Corollary 3.18.

From Proposition 3.17, we can also obtain the following estimate.

Proposition 3.20. Let X be a Banach space. Then
√

2
4

≤ ∆h(X, I) ≤
√

2
2
.

Proof. From Proposition 3.17 and IB(X) ≥ 1
2
(see Theorem 3.2 in [25]), we can obtain

∆h(X, I) ≥
√

2
2
IB(X) ≥

√
2

4
. On the other hand, from Proposition 3.17 and S(X) ≤

√
2

by Remark 11 in [16], we can get ∆h(X, I) ≤
√

2
2
. This completes the proof.

The following conclusion will show two important things. One is the fact that the
upper bound of ∆h(X, I) in the Proposition 3.20 is sharp. The other is the Hilbert space
can be characterized by ∆h(X, I).

Theorem 3.21. Let X be a Banach space of dimX ≥ 3. Then ∆h(X, I) =
√

2
2

if and
only if X is a Hilbert space.
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Proof. If X is a Hilbert space, then IB(X) = 1 by Theorem 3.2 in [25]. Thus we can

obtain ∆h(X, I) =
√

2
2

from Proposition 3.17 and S(X) ≤
√
2.

On the other hand, let ∆h(X, I) =
√

2
2
. From Proposition 3.17 and S(X) ≤

√
2, we

can obtain S(X) =
√
2, then J(X) =

√
2. By Theorem 2.3 in [21], we can get that X is a

Hilbert space. 2

Now, we will give the relation between uniform non-squareness and ∆h(X, I).

Theorem 3.22. Let X be a Banach space.

(1) If ∆h(X, I) > 1
2
, then X is uniformly non-square.

(2) If X is uniformly non-square, then ∆h(X, I) >
√

2
4
.

Proof. (1) Let X be not uniformly non-square, then S(X) = 1 (see [16]). From Proposition
3.17, we can obtain

∆h(X, I) ≤ S(X)

2
=

1

2
.

This contradicts ∆h(X, I) > 1
2
, hence X is a uniformly non-square Banach space.

(2) If X is uniformly non-square, then we can obtain IB(X) > 1
2
by Corollary 3.6 in

[25]. So, we can get ∆h(X, I) >
√

2
4

from Proposition 3.17. This completes the proof. 2

Corollary 3.23. Assume that X is a Banach space with ∆h(X, I) >
√

2
4
. Then X has

the fixed point property.

In the next portion, we will see that the constant ∆h(X, I) and the uniform normal
structure has a nice relationship. Brodskii and Milman [6] introduced some geometric
concepts for the first time in 1948 as:

Definition 3.24. Let K be a non-singleton subset of a Banach space X, if K is closed,
bounded as well as convex, then X holds the normal structure, whenever r(K) < diam(K)
for every K, and consequently defined mathematically as is

diam(K) := sup{‖x− y‖ : x, y ∈ K}

and

r(K) := inf{sup{‖x − y‖ : y ∈ K} : X ∈ K},
where diam(K) and r(K) are respectively symbolized for diameter as well as for Chebyshev
radius. A Banach space X is said to have uniform normal structure if

inf

{

diam(K)

r(K)

}

> 1,

with diam(K) > 0.

In order to study the relationship between ∆h(X, I) and uniform normal structure.
Now, we give the corresponding lemma as follows:

Lemma 3.25. (see [10]) Let X be a Banach space with J(X) < 1+
√

5
2

. Then X has
uniform normal structure.

Theorem 3.26. Let X be a Banach space. If ∆h(X, I) >
√
5−1
2

, then X has uniform
normal structure.
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Proof. Since J(X)S(X) = 2, by using Proposition 3.17, we have

∆h(X, I) ≤ S(X)

2
=

1

J(X)
.

Hence, we can obtain

J(X) ≤ 1

∆h(X, I)
<

1
√

5−1
2

=

√
5 + 1

2
.

By utilizing Lemma 3.25, we can get that X has uniform normal structure. 2

4. The Difference Between the Heights and Midlines in Equilateral Triangles

In this section, we will introduce the two constants ∆m(X) and ∆M (X) related to the
midlines in equilateral triangles and the relationship between the heights and midlines in
equilateral triangles. Meanwhile, we also introduce a new constant D∆(X) to study the
difference between the heights and midlines in equilateral triangles.

4.1. The midlines in equilateral triangles
In [23], Martin et al. have stated that, in any Minkowski planes,

inf {‖x+ y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1} ≤
√
3

and
sup {‖x+ y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1} ≥

√
3.

This result illustrates that there always exists the equilateral triangle with a median ≤
√
3

2

as well as a median ≥
√

3
2
. Motivated by this conclusion, in this section, we will introduce

two new constants ∆m(X), ∆M (X) related to the midlines of equilateral triangles in non-
trivial Banach spaces.

Definition 4.1. For a given Banach space X. Let

∆m(X) = inf

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

,

∆M (X) = sup

{

‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 1

}

.

First, we give their bounds.

Proposition 4.2. Let X be a Banach space. Then 1
2
≤ ∆m(X) ≤

√
3

2
≤ ∆M (X) ≤ 1.

Proof. Clearly, 1
2
≤ ∆m(X) and ∆M (X) ≤ 1 can be given the following two inequalities

‖x+ y‖
2

≤ ‖x‖+ ‖y‖
2

= 1,

1 = ‖x‖ =
‖2x‖
2

=
‖(x+ y) + (x− y)‖

2
≤ ‖x+ y‖+ ‖x− y‖

2
=

1

2
+

‖x+ y‖
2

,

where x, y ∈ SX with ‖x− y‖ = 1.
Then, by the definition of δX(ǫ) and ρ(ǫ), we can obtain

∆m(X) = 1− ρ(1) ≤ 1−
(

1−
√

1− 12

4

)

=

√
3

2
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and

∆M (X) = 1− δX(1) ≥ 1−
(

1−
√

1− 12

4

)

=

√
3

2

which is the desired conclusion. 2

Remark 4.3. From the proof of Example 3.3, we can obtain ∆m(R2, ‖ · ‖1) = ∆h(R
2, ‖ ·

‖1) = 1
2
. And we can also get ∆M (X) = ∆H(X) = 1, if X is the space R

2 endowed the
norm as Example 3.5. Thus, the lower bound and the upper bound of ∆m(X) and ∆M (X)
can be attained, respectively.

With regard to the other bounds of ∆m(X) and ∆M (X), Proposition 4.4 shows that
they can be attained in Hilbert spaces.

Proposition 4.4. Let X be a Hilbert space, then ∆m(X) = ∆M (X) =
√

3
2
.

Proof. Let x, y ∈ SX such that ‖x − y‖ = 1. By applying the parallelogram law, we can
obtain

‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 − ‖x− y‖2 = 3,

it is easy for us to get ∆m(X) = ∆M (X) =
√

3
2
. 2

Corollary 4.5. If X is a Hilbert space, then ∆h(X) = ∆m(X) and ∆H(X) = ∆M (X)
from Proposition 3.6 and Proposition 4.4, which implies that the heights coincide with the
midlines of equilateral triangles in Hilbert spaces. However, the converse is not true by
Remark 4.3.

Now, we will discuss the relation between ∆m(X) and the Schäffer constant S(X).

Proposition 4.6. Let X be a Banach space. Then ∆m(X) ≥ S(X)
2

.

Proof. Let x, y ∈ SX such that ‖x − y‖ = 1. From the proof of Proposition 4.2, we can
obtain ‖x+ y‖ ≥ 1. Thus, we can get

2∆m(X) = inf{max{‖x + y‖, ‖x− y‖} : x, y ∈ SX , ‖x− y‖ = 1}.

Then it is easily seen that 2∆m(X) ≥ S(X), which completes the proof. 2

In the following, we can obtain that ∆m(X) can be used to characterize uniformly
non-square space.

Proposition 4.7. Let X be a Banach space, then X is uniformly non-square if and only
if ∆m(X) > 1

2
.

Proof. Since X is not uniformly non-square if and only if ρ(1) = 1
2
(see [4]). From the

proof of Proposition 4.2, we can get that X is not uniformly non-square if and only if
∆m(X) = 1

2
. This completes the proof. 2

Next, we will see that uniform non-squareness and ∆M (X) has a relationship.

Proposition 4.8. Let X be Banach space. If ∆M (X) < 1, then X is uniformly non-
square.

Proof. According to the proof of Proposition 4.2 and ∆M (X) < 1, we can obtain δX(1) > 0,
and the proposition follows. 2

The converse of Proposition 4.8 is not true. Now, we provide a counterexample as
follows:
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Example 4.9. Let X be the space R
2 endowed with the norm

‖x‖ = ‖(x1, x2)‖ =

{

‖(x1, x2)‖1, x1x2 ≥ 0,
‖(x1, x2)‖∞, x1x2 ≤ 0.

Then ∆M (X) = 1 and X is uniformly non-square.

Proof. From [26], Mizuguchi have proved that CNJ (X) = 3+
√

5
4

< 2, then X is uniformly
non-square (see [31]). However, fix x = (1, 0), y = (0, 1), then x−y = (1,−1). It is evident
that ‖x‖ = ‖y‖ = ‖x− y‖ = 1. Now, from Proposition 4.2, we can obtain

1 =

∥

∥

∥

∥

(

1

2
,
1

2

)∥

∥

∥

∥

=
‖x+ y‖

2
≤ ∆M (X) ≤ 1,

which implies ∆M (X) = 1. 2

4.2. The difference between the heights and midlines in equilateral triangles

In this section, in order to study the difference between the heights and midlines of
equilateral triangles, we will introduce a new geometric constant.

Definition 4.10. For a given Banach space X, let

D∆(X) = sup

{ ‖x+ y‖
infλ∈[0,1] ‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1

}

.

Since ‖λx+(1−λ)y‖ ≥ 1
2
for any λ ∈ [0, 1] and ‖x‖ = ‖y‖ = ‖x− y‖ = 1 by Theorem

1 in [27], then the definition of this constant is meaningful. The geometric meaning of
D∆(X) is the supremum of the ratio of twice the midlines to the heights, in equilateral
triangles.

It is easy for us to obtain the equivalent form of D∆(X):

D∆(X) = sup

{

‖x+ y‖
‖λx+ (1− λ)y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1, 0 ≤ λ ≤ 1

}

.

First, we give its bounds.

Proposition 4.11. Let X be a Banach space. Then 2 ≤ D∆(X) ≤ 4.

Proof. Let λ = 1
2
, then for any ‖x‖ = ‖y‖ = ‖x− y‖ = 1, clearly

‖x+ y‖
‖λx+ (1− λ)y‖ = 2,

which implies the left inequality.
On the other hand, let x, y ∈ SX such that ‖x−y‖ = 1, we have ‖x+y‖ ≤ ‖x‖+‖y‖ = 2.

Then, according to Theorem 2 in [27], we can obtain ‖λx+(1−λ)y‖ ≥ 1
2
, for any λ ∈ [0, 1].

Thus, we can get
‖x+ y‖

‖λx+ (1− λ)y‖ ≤ 4.

This completes the proof. 2

The following result shows that the lower bound of D∆(X) in the above proposition
is sharp.
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Proposition 4.12. Let X be a Hilbert space, then D∆(X) = 2.

Proof. Let ‖x‖ = ‖y‖ = ‖x− y‖ = 1. Assume that X is a Hilbert space, then

1 = ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2 = 2− 2〈x, y〉.

Thus, we can obtain 〈x, y〉 = 1
2
. Then, we have

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 = 3.

And, by Proposition 3, we can get ∆h(X) =
√

3
2
. Hence, we can obtain

D∆(X) = sup

{

‖x+ y‖
‖λx+ (1− λ)y‖ : x, y ∈ SX , ‖x− y‖ = 1, 0 ≤ λ ≤ 1

}

=

√
3

∆h(X)
= 2,

which completes the proof. 2

Remark 4.13. From Proposition 4.12, we can also obtain the heights coincide with the
midlines for equilateral triangles in Hilbert spaces, which is the same as the statement of
Corollary 4.5.
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