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Abstract. Parkash and Kour obtained a new version of Cohen’s theorem for Noetherian

modules, which states that a finitely generated R-module M is Noetherian if and only if

for every prime ideal p of R with Ann(M) ⊆ p, there exists a finitely generated submodule

Np of M such that pM ⊆ Np ⊆ M(p), where M(p) = {x ∈ M | sx ∈ pM for some

s ∈ R \ p}. In this paper, we generalize the Parkash and Kour version of Cohen’s theorem

for Noetherian modules to S-Noetherian modules and w-Noetherian modules.

1. Introduction

Throughout this article, all rings are commutative rings with identity and all
modules are unitary. Let R be a ring and M an R-module. For a subset U of
M , we denote by ⟨U⟩ the submodule of M generated by U . Early in 1950, Co-
hen showed that a ring R is Noetherian if and only if every prime ideal of R is
finitely generated [4, Theorem 2]. Let p be a prime ideal of R. Following [10], we
set M(p) := {x ∈ M | sx ∈ pM for some s ∈ R \ p}. Then M(p) is obviously a
submodule of M . In 1994, Smith extended Cohen’s theorem from rings to modules,
showing that a finitely generated R-module M is Noetherian if and only if the sub-
modules pM of M are finitely generated for every prime ideal p of R, if and only
if M(p) is finitely generated for each prime ideal p of R with p ⊇ Ann(M) [12].
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Recently, Parkash and Kour generalized Smith’s result on Noetherian modules as
follows:

Theorem. ([11, Theorem 2.1.]) Let R be a ring and M a finitely generated R-
module. Then M is Noetherian if and only if for every prime ideal p of R with
Ann(M) ⊆ p, there exists a finitely generated submodule Np of M such that pM ⊆
Np ⊆ M(p).

In the past few decades, some generalizations of Noetherian rings or Noetherian
modules have been extensively studied, especially via some multiplicative subsets
S of R and the w-operation (see [1, 6, 7, 8, 9, 15, 16] for example). And the related
Cohen’s theorem has also been considered by many authors (see [1, 3, 5, 14] for
example). In 2002, Anderson and Dumitrescu gave an analogue of Cohen’s theorem
for S-Noetherian modules, which states that an S-finite module M is S-Noetherian
if and only if the submodules of the form pM are S-finite for each prime ideal p of
R (disjoint from S) [1, Proposition 4]. In 1997, Wang and McCasland obtained an
analogue of Cohen’s theorem for strong Mori (SM) modules M over integer domains
for which M satisfies the ascending chain condition on w-submodules of M . In fact,
they showed that a w-module M is an SM module if and only if each w-submodule
of M is w-finite type, if and only if M and every prime w-submodule of M are
w-finite type [14, Theorem 4.4]. In this paper, we give both an S-analogue and a
w-analogue of Parkash and Kour’s result on Noetherian modules, which can be seen
as generalizations of Cohen’s theorem for modules.

2. Cohen’s Theorem for S-Noetherian Modules

Let R be a ring and S a multiplicative subset of R, that is 1 ∈ S and s1s2 ∈ S for
any s1 ∈ S, s2 ∈ S. Let M be an R-module. Recall from [1] that M is called S-finite
if sM ⊆ F for some s ∈ S and some finitely generated submodule F of M . Also,
M is called S-Noetherian if each submodule of M is an S-finite R-module. Then R
is called an S-Noetherian ring if R is S-Noetherian as an R-module. Anderson and
Dumitrescu obtained a Cohen-type theorem for S-Noetherian modules: An S-finite
R-module M is S-Noetherian if and only if the submodules of the form pM are
S-finite for each prime ideal p of R (disjoint from S) [1, Proposition 4]. Now we
give a “stronger” version of Cohen’s theorem for S-Noetherian modules which can
be seen as an S-analogue of Parkash and Kour’s result [11, Theorem 2.1].

Theorem 2.1. Let R be a ring and S a multiplicative subset of R. Let M be an
S-finite R-module. Then M is S-Noetherian if and only if for every prime ideal
p of R with Ann(M) ⊆ p, there exists an S-finite submodule Np of M such that
pM ⊆ Np ⊆ M(p).

Proof. Suppose thatM is an S-Noetherian R-module and let p be a prime ideal with
Ann(M) ⊆ p. If we take Np := pM , then Np is certainly an S-finite submodule of
M satisfying pM ⊆ Np ⊆ M(p).

Conversely, suppose on the contrary that M is not S-Noetherian. Let N be the
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set of all submodules of M which are not S-finite. Then N is non-empty. Make
a partial order on N by defining N1 ≤ N2 if and only if N1 ⊆ N2 in N. Let
{Ni | i ∈ Λ} be a chain in N. Set N :=

∪
i∈Λ

Ni. Then N is not S-finite. Indeed,

suppose sN ⊆ ⟨x1, . . . , xn⟩ ⊆ N for some s ∈ S. Then there exists i0 ∈ Λ such
that {x1, . . . , xn} ⊆ Ni0 . Thus sNi0 ⊆ sN ⊆ ⟨x1, . . . , xn⟩ ⊆ Ni0 implies that Ni0

is S-finite, which is a contradiction. Then by Zorn’s Lemma, N has a maximal
element, which is also denoted by N . Set p := (N : M) = {r ∈ R | rM ⊆ N}.

We claim that p is a prime ideal of R. Assume on the contrary that there
exist a, b ∈ R \ p such that ab ∈ p. Since a, b ∈ R \ p, we have aM ̸⊆ N and
bM ̸⊆ N . Therefore N + aM is S-finite. Let {y1, . . . , ym} be a subset of N + aM
such that s1(N + aM) ⊆ ⟨y1, . . . , ym⟩ for some s1 ∈ S. Write yi = wi + azi for
some wi ∈ N and zi ∈ M (1 ≤ i ≤ m). Set L := {x ∈ M | ax ∈ N}. Then
N + bM ⊆ L, and hence L is also S-finite. Let {x1, . . . , xk} be a subset of L such
that s2L ⊆ ⟨x1, . . . , xk⟩ for some s2 ∈ S. Let n ∈ N and write

s1n =
m∑
i=1

riyi =
m∑
i=1

riwi + a
m∑
i=1

rizi.

Then
m∑
i=1

rizi ∈ L. Thus s2
m∑
i=1

rizi =
k∑

i=1

r′ixi for some r′i ∈ R (i = 1, . . . , k). So

s1s2n =
m∑
i=1

s2riwi +
k∑

i=1

r′iaxi. Thus s1s2N ⊆ ⟨w1, . . . , wm, ax1, . . . , axk⟩ implies

that N is S-finite, which is a contradiction.
We also claim that M(p) ⊆ N . Suppose on the contrary that there exists

y ∈ M(p) such that y ̸∈ N . Then there exists t ∈ R \ p such that ty ∈ pM = (N :
M)M ⊆ N . As t ̸∈ p = (N : M), it follows that tM ̸⊆ N . Therefore N + tM is S-
finite. Let {u1, . . . , um} be a subset of N+tM such that s3(N+tM) ⊆ ⟨u1, . . . , um⟩
for some s3 ∈ S. Write ui = wi + tzi (i = 1, . . . ,m) with wi ∈ N and zi ∈ M . Set
T := {x ∈ M | tx ∈ N}. Then N ⊂ N + Ry ⊆ T , and hence T is S-finite. Then
there exists a subset {v1, . . . , vl} of T such that s4T ⊆ ⟨v1, . . . , vl⟩ for some s4 ∈ S.
Let n be an element in N . Then

s3n =

m∑
i=1

riui =

m∑
i=1

riwi + t

m∑
i=1

rizi.

Thus
m∑
i=1

rizi ∈ T . So s4
m∑
i=1

rizi =
l∑

i=1

r′ivi for some r′i ∈ R (i = 1, . . . , l). Hence

s3s4n =
m∑
i=1

s4riwi +
l∑

i=1

r′itvi. Thus s3s4N ⊆ ⟨w1, . . . , wm, tv1, . . . , tvl⟩ implies that

N is S-finite, which is a contradiction.
Let F = ⟨m1, . . . ,mk⟩ be a submodule of M such that sM ⊆ F for some s ∈ S.

Claim that p ∩ S = ∅. Indeed, if s′ ∈ p for some s′ ∈ S, then s′M ⊆ N ⊆ M . So
ss′N ⊆ ss′M ⊆ s′F ⊆ s′M ⊆ N implies that N is S-finite, which is a contradiction.
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Note that p = (N : M) ⊆ (N : F ) ⊆ (N : sM) = (p : s) = p as p is a prime ideal

of R. So p = (N : F ) = (N : ⟨m1, . . . ,mk⟩) =
k∩

i=1

(N : Rmi). By [2, Proposition

1.11], p = (N : Rmj) for some 1 ≤ j ≤ k. Since mj ̸∈ N , it follows that N + Rmj

is S-finite. Let {y1, . . . , ym} be a subset of N + Rmj such that s5(N + Rmj) ⊆
⟨y1, . . . , ym⟩ for some s5 ∈ S. Write yi = wi+aimj for some wi ∈ N and ai ∈ R (i =

1, . . . ,m). Let n ∈ N . Then s5n =
m∑
i=1

ri(wi + aimj) =
m∑
i=1

riwi + (
m∑
i=1

riai)mj .

Thus (
m∑
i=1

riai)mj ∈ N . So
m∑
i=1

riai ∈ p. Thus s5N ⊆ ⟨w1, . . . , wm⟩ + pmj . As

Ann(M) ⊆ (N : M) = p, there exists an S-finite submodule Np of M such that
pM ⊆ Np ⊆ M(p). Thus

s5N ⊆ ⟨w1, . . . , wm⟩+ pmj

⊆ ⟨w1, . . . , wm⟩+ pM

⊆ ⟨w1, . . . , wm⟩+Np

⊆ ⟨w1, . . . , wm⟩+M(p)

⊆ N

Since Np + ⟨w1, . . . , wm⟩ is S-finite, it follows that N is also S-finite, which is a
contradiction. Hence M is S-Noetherian. 2

Taking S = {1}, we can recover the following result of Parkash and Kour.

Corollary 2.2. ([11, Theorem 2.1]) Let R be a ring and M a finitely gener-
ated R-module. Then M is Noetherian if and only if for every prime ideal p of
R with Ann(M) ⊆ p, there exists a finitely generated submodule Np of M such that
pM ⊆ Np ⊆ M(p).

3. Cohen’s Theorem for w-Noetherian Modules

We recall some basic knowledge on the w-operation over a commutative ring.
One can refer to [13] for more details. Let R be a commutative ring and J a finitely
generated ideal of R. Then J is called a GV-ideal if the natural homomorphism
R → HomR(J,R) is an isomorphism. The set of GV-ideals is denoted by GV(R).
Let M be an R-module. Define

torGV(M) := {x ∈ M | Jx = 0 for some J ∈ GV(R)}.

An R-module M is said to be GV-torsion (resp., GV-torsion-free) if torGV(M) =
M (resp., torGV(M) = 0). A GV-torsion-free module M is called a w-module if
Ext1R(R/J,M) = 0 for any J ∈ GV(R). A DW ring R is a ring for which every R-
module is a w-module. A maximal w-ideal is an ideal of R which is maximal among
the w-submodules of R. The set of all maximal w-ideals is denoted by w-Max(R).
Each maximal w-ideals is a prime ideal (see [13, Theorem 6.2.14]).
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An R-homomorphism f : M → N is said to be a w-monomorphism (resp.,
w-epimorphism, w-isomorphism) if for any p ∈ w-Max(R), fp : Mp → Np is a
monomorphism (resp., an epimorphism, an isomorphism). Note that f is a w-
monomorphism (resp., w-epimorphism) if and only if Ker(f) (resp., Coker(f)) is
GV-torsion. An R-module M is said to be w-finite type if there exist a finitely
generated free module F and a w-epimorphism g : F → M . Obviously, an R-
module M is w-finite type if and only if there is a finitely generated submodule N
of M such that M/N is GV-torsion.

Lemma 3.1. Let N be a w-submodule of a GV-torsion-free w-finite type module
M . Then (N :R M)p = (Np :Rp

Mp) for any prime w-ideal p of R.

Proof. Let p be a prime w-ideal of R. Obviously, (N :R M)p ⊆ (Np :Rp
Mp). On the

other hand, since M is a w-finite type R-module, there exists a finitely generated
submodule F = ⟨m1, . . . ,mn⟩ of M satisfying that for any m ∈ M there exists
J ∈ GV(R) such that Jm ⊆ F . Let r

s be an element in (Np :Rp
Mp). Then for each

i = 1, . . . , n, there exists si ∈ R \ p such that sirmi ∈ N . Thus s1 · · · snrF ⊆ N .
So s1 · · · snrJm ⊆ N for all m ∈ M ⊆ E(M), where E(M) is the injective envelope
of M . By [13, Theorem 6.16], s1 · · · snrM ⊆ N since N is a w-module. Hence
s1 · · · snr ∈ (N :R M). Consequently, r

s = s1···snr
s1···sns ∈ (N :R M)p. 2

Let M be an R-module. Recall from [13, Definition 8.1] that M is called a
w-Noetherian module if every submodule of M is w-finite type. And R is called a
w-Noetherian ring if R is w-Noetherian as an R-module.

Theorem 3.2. Let R be a ring and M a GV-torsion-free w-finite type R-module.
Then M is a w-Noetherian module if and only if for every prime w-ideal p of
R with Ann(M) ⊆ p, there exists a w-finite type submodule Np of M such that
pM ⊆ Np ⊆ M(p).

Proof. Suppose that M is a w-Noetherian R-module and let p be a prime w-ideal
with Ann(M) ⊆ p. If we take Np := pM , then Np is certainly a w-finite type
submodule of M satisfying pM ⊆ Np ⊆ M(p).

Conversely, suppose on the contrary that M is not w-Noetherian. Let N be the
set of all w-submodules of M which are not w-finite type. Then N is non-empty.
Make a partial order on N by defining N1 ≤ N2 if and only if N1 ⊆ N2 in N. Let
{Ni | i ∈ Λ} be a chain in N. Set N :=

∪
i∈Λ

Ni. Then N is not w-finite type.

Indeed, suppose there is an exact 0 → F → N → T → 0 with T GV-torsion and
F = ⟨x1, . . . , xn⟩ finitely generated. Then there exists i0 ∈ Λ such that F ⊆ Ni0 .
Consider the following commutative diagram with exact rows:

0 // F // Ni0� _

��

// T ′
� _

��

// 0

0 // F // N // T // 0

Since T ′ is a submodule of T , we have that T ′ being GV-torsion implies that Ni0 is
w-finite type, which is a contradiction. Since N is a w-submodule of M , it follows
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that N ∈ N. So by Zorn’s Lemma, N has a maximal element, which is also denoted
by N . Set p := (N : M) = {r ∈ R | rM ⊆ N}. Then p is a w-ideal by [13, Section
6.10, Exercise 6.8].

We claim that p is a prime ideal of R. Assume on the contrary that there exist
a, b ∈ R \ p such that ab ∈ p. Since a, b ∈ R \ p, we have aM ̸⊆ N and bM ̸⊆ N .
Therefore N + aM is w-finite type. Let {y1, . . . , ym} be a subset of N + aM such
that 0 → F1 → N + aM → T1 → 0 be an exact sequence with T1 GV-torsion and
F1 = ⟨y1, . . . , ym⟩ finitely generated. Write yi = wi + azi for some wi ∈ N and
zi ∈ M (1 ≤ i ≤ m). Set L := {x ∈ M | ax ∈ N}. Then N + bM ⊆ L, and
hence L is w-finite type. Let 0 → F2 → L → T2 → 0 be an exact sequence with
T2 GV-torsion and F2 = ⟨x1, . . . , xk⟩ finitely generated. Let n be an element in
N . Then there is a GV-ideal J1 = ⟨j11 , . . . , j

p
1 ⟩ such that J1n ⊆ F1. So there is

{rti | t = 1, . . . , p; i = 1, . . . ,m} ⊆ R such that

jt1n =
m∑
i=1

rtiyi =
m∑
i=1

rtiwi + a
m∑
i=1

rtizi (t = 1, . . . , p).

Then
m∑
i=1

rtizi ∈ L (t = 1, . . . , p). Thus there exists a GV-ideal J2 = ⟨j12 , . . . , jl2⟩ such

that js2
m∑
i=1

rtizi =
k∑

i=1

r′t,si xi for some {r′t,si | i = 1, . . . , k; t = 1, . . . , p; s = 1, . . . , l} ⊆

R. So jt1j
s
2n =

m∑
i=1

js2r
t
iwi +

k∑
i=1

r′t,si axi (t = 1, . . . , k; s = 1, . . . , l). Thus

J1J2n ⊆ ⟨w1, . . . , wm, ax1, . . . , axk⟩

implies that N is w-finite type, which is a contradiction.
We claim that M(p) ⊆ N . Assume on the contrary that there exists an element

y ∈ M(p) such that y ̸∈ N . Then there exists t′ ∈ R \ p such that t′y ∈ pM =
(N : M)M ⊆ N . As t′ ̸∈ p = (N : M), it follows that t′M ̸⊆ N . Therefore
N + t′M is w-finite type. Let 0 → F3 → N + t′M → T3 → 0 be an exact
sequence with T3 GV-torsion and F3 = ⟨u1, . . . , um⟩ a finitely generated submodule
of N + t′M . Write ui = wi + t′zi (i = 1, . . . ,m) with wi ∈ N and zi ∈ M . Set
L := {x ∈ M | tx ∈ N}. Then N ⊂ N + Ry ⊆ L, and hence L is w-finite
type. Let 0 → F4 → L → T4 → 0 be an exact sequence with T4 GV-torsion and
F4 = ⟨u1, . . . , un⟩ a finitely generated submodule of L. Let n be an element in
N . Then there is a GV-ideal J3 = ⟨j13 , . . . , jk3 ⟩ such that J3n ⊆ F3. So there is
{rti | t = 1, . . . , p; i = 1, . . . ,m} ⊆ R such that

jt3n =
m∑
i=1

rtiui =
m∑
i=1

rtiwi + t′
m∑
i=1

rtizi (t = 1, . . . , p).

So
m∑
i=1

rtizi ∈ L (t = 1, . . . , p). Thus there exists a GV-ideal J4 = ⟨j14 , . . . , jl4⟩

such that js4
m∑
i=1

rtizi =
n∑

i=1

r′t,si ui for some {r′t,si | i = 1, . . . ,m; t = 1, . . . , p; s =
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1, . . . , l} ⊆ R. So jt3j
s
4n =

m∑
i=1

js4r
t
iwi +

k∑
i=1

r′t,si t′ui (t = 1, . . . , k; s = 1, . . . , l). Thus

J3J4n ⊆ ⟨w1, . . . , wm, t′u1, . . . , t
′uk⟩ implies that N is w-finite type, which is a

contradiction.
Let m be a maximal w-ideal of R and F = ⟨m1, . . . ,mk⟩ a submodule of M

such that M/F is GV-torsion. So Mm = Fm. Then (N :R M)m = (Nm :Rm
Mm) =

(Nm :Rm
Fm) = (N :R F )m by Lemma 3.1. By [13, Section 6.10, Exercise 6.8],

(N :R M) and (N :R F ) are all w-ideals. So we have p = (N :R M) = (N :R F ) =
k∩

i=1

(N : Rmi). By [2, Proposition 1.11], p = (N :R Rmj) for some 1 ≤ j ≤ k. Since

mj ̸∈ N , it follows thatN+Rmj is w-finite type. Let 0 → F5 → N+Rmj → T5 → 0
be an exact sequence with T5 GV-torsion and F5 = ⟨y1, . . . , ym⟩ a finitely generated
submodule of N + Rmj . Write yi = wi + aimj for some wi ∈ N and ai ∈ R (i =
1, . . . ,m). Let n be an element in N . Then there is a GV-ideal J5 = ⟨j15 , . . . , jl5⟩
such that J5n ⊆ F5. So there is {rti | t = 1, . . . , p; i = 1, . . . ,m} ⊆ R such that

jt5n =
m∑
i=1

rtiyi =
m∑
i=1

rtiwi + (
m∑
i=1

rtiai)mj (t = 1, . . . , l). So
m∑
i=1

rtiai ∈ p. Thus

J5N ⊆ ⟨w1, . . . , wm⟩ + pmj . As Ann(M) ⊆ (N : M) = p, there exists a w-finite
type submodule Np of M such that pM ⊆ Np ⊆ M(p). Thus

J5N ⊆ ⟨w1, . . . , wm⟩+ pmj

⊆ ⟨w1, . . . , wm⟩+ pM

⊆ ⟨w1, . . . , wm⟩+Np

⊆ ⟨w1, . . . , wm⟩+M(p)

⊆ N

Since Np + ⟨w1, . . . , wm⟩ is w-finite type, it follows that N is also w-finite type,
which is a contradiction. Hence M is w-Noetherian. 2

Taking M := R, we have the following characterization of w-Noetherian rings.

Corollary 3.3. ([15, Theorem 4.7(1)]) Let R be a ring. Then R is a w-Noetherian
ring if and only if each prime w-ideal of R is w-finite type.
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