Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT)(No. 2022R1F1A107008211).
References
- Oh SG. A View on water-laekage and contermeasure of concrete structure. Magazine of the Korea Concrete Institute. 2002 Nov;14(6):14-9. https://doi.org/10.22636/MKCI.2002.14.6.14
- Understanding of Concrete [Internet]. Seoul (Korea): Korea Cement Association. Available from: http://www.cement.or.kr/about_2015/cont8.asp?sm=1_4_0
- Kang HK, Hong SG. Causes and mitigation of concrete cracking. Magazine of the Korea Concrete Institute. 2008 Sep;20(5):61-8. https://doi.org/10.22636/MKCI.2008.20.5.61
- Choo JH, Park SW, Kim HT, Jee KH, Yoon TG. Analysis and cause of occurrence of lining cracks on NATM tunnel based on the precise inspection for safety and diagnosis-Part I. Journal of Korean Tunnelling and Underground Space Association. 2011 May;13(3):199-214. https://doi.org/10.9711/KTAJ.2011.13.3.199
- Kim SM, Sohn JM, Kim DS. A method for concrete crack detection using U-Net based image inpainting technique. Journal of the Korea Society of Computer and Information. 2020 Oct;25(10):35-42. https://doi.org/10.9708/jksci.2020.25.10.035
- Sohn JM, Kim DS, Hwang HB. Improvement of learning concrete crack detection model by weighted loss function. Journal of the Korea Society of Computer and Information. 2020 Oct;25(10):15-22. https://doi.org/10.9708/jksci.2020.25.10.015
- Kim GY, Kim DH, Kim DJ. Deep learning-based exterior wall crack detection method for building safety diagnosis. Journal of the Korean Institute of Plant Engineering. 2021 Dec;26(4):31-43.
- Lee SM, Kim KY, Kim DJ. Development of robust semantic segmentation modeling on various wall cracks. Proceedings of the Korean Society of Computer Information Conference. 2022 Jul 14-16; Jeju, Korea. Yongin (Korea): Korea Society of Computer Information; 2022. p. 49-52.
- Dung CV, Anh LD. Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction. 2019 Mar;99:52-8. https://doi.org/10.1016/j.autcon.2018.11.028
- Lee SI, Yang GM, Lee YM, Lee JH, Jeong YJ, Lee JG, Choi W. Recognition and visualization of crack on concrete wall using deep learning and transfer learning. Journal of the Korean Society of Agricultural Engineers. 2019 May;61(3):55-65. https://doi.org/10.5389/KSAE.2019.61.3.055
- Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015 Jun 27-30; Las Vegas, NV; Manhattan (NY): IEEE; 2015. p. 2818-26. https://doi.org/10.1109/CVPR.2016.308
- Seol DH, Oh JH, Kim HJ. Comparison of deep learning-based cnn models for crack detection. Journal of the Architectural Institute of Korea Structure & Construction. 2020 Mar;36(3):113-20. https://doi.org/10.5659/JAIK_SC.2020.36.3.113
- Jung SY, Lee SK, Park CI, Cho SY, Yu JH. A method for detecting concrete cracks using deep-learning and image processing. Journal of the Architectural Institute of Korea Structure & Construction. 2019 Nov;35(11):163-70. https://doi.org/10.5659/JAIK_SC.2019.35.11.163
- Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017 July 21-26; Honolulu, HI. Manhattan (NY): IEEE; 2017. p. 7263-71. https://doi.org/10.1109/CVPR.2017.690
- Lee MH, Nam KW, Lee CW. Crack detection on the road in aerial image using mask R-CNN. Journal of the Korea Industrial Information Systems Research. 2019 Jun;24(3):23-9. https://doi.org/10.9723/jksiis.2019.24.3.023
- Yamane T, Chun P. Crack detection from a concrete surface image based on semantic segmentation using deep learning. Journal of Advanced Concrete Technology. 2020 Sep;18(9):493-504. https://doi.org/10.3151/jact.18.493
- Kim SM, Sohn JM, Kim DS. A method for concrete crack detection using U-Net based image inpainting technique. Journal of The Korea Society of Computer and Information. 2020 Oct;25(10):35-42. https://doi.org/10.9708/jksci.2020.25.10.035
- Ha JW, Park KW, Kim MS. A development of road crack detection system using deep learning-based segmentation and object detection. The Journal of Society for e-Business Studies. 2021 Feb;26(1):93-106. https://doi.org/10.7838/jsebs.2021.26.1.093
- Panella F, Aldo L, Jan B. Semantic segmentation of cracks: Data challenges and architecture. Automation in Construction. 2022 Mar;135:104110. https://doi.org/10.1016/j.autcon.2021.104110
- Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Communications of the ACM. 2017 Jun;60(6):84-90. https://doi.org/10.1145/3065386
- Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J. A review on deep learning techniques applied to semantic segmentation. arXiv preprint. 2017 Apr;arXiv:1704.06857. https://doi.org/10.48550/arXiv.1704.06857
- Hafiz AM, Bhat GM. A survey on instance segmentation: state of the art. International Journal of Multimedia Information Retrieval. 2020 Jul;9(3):171-189. https://doi.org/10.1007/s13735-020-00195-x
- Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015 Jun 7-12; Boston, MA. Manhattan (NY): IEEE; 2015. p. 3431-40. https://doi.org/10.1109/CVPR.2015.7298965
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention. 2015 Oct 5-9; Munich, Germany, Manhattan (NY): Springer; 2015. p. 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
- Arkin E, Yadikar N, Muhtar Y, Ubul K. A Survey of Object Detection Based on CNN and Transformer. 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). 2021 July 16-18; Chengdu, China. Manhattan (NY): IEEE; 2021. p. 99-108. https://doi.org/10.1109/PRML52754.2021.9520732
- Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018 Apr;40(4):834-48. https://doi.org/10.1109/TPAMI.2017.2699184
- Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint. 2017 Dec;arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587
- Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV). 2018 Sep 8-14; Munich, Germany. Manhattan (NY): Springer; 2018. p. 801-8. https://doi.org/10.1007/978-3-030-01234-2_49
- Hassan SI, Dang L, Im SH, Min KB, Nam JY, Moon HJ. Damage detection and classification system for sewer inspection using convolutional neural networks based on deep learning. Journal of the Korea Institute of Information and Communication Engineering. 2018 Mar;22(3):451-7. http://doi.org/10.6109/jkiice.2018.22.3.451
- Paik SH, Choi DC, Kim YK, Jung SW, Kim DN. Implementation of the drones with deep-learning crack detection analysis for inspection of bridg. Journal of Korea Institute of Information Technology. 2021 Mar;19(3):45-52. http://dx.doi.org/10.14801/jkiit.2021.19.3.45
- Ratner AJ, Ehrenberg H, Hussain Z, Dunnmon J, Re C. Learning to compose domain-specific transformations for data augmentation. Advances in Neural Information Processing Systems. 2017 Sep;30:3236-46. https://doi.org/10.48550/arXiv.1709.01643
- Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data. 2019 Jul;6(1):1-48. https://doi.org/10.1186/s40537-019-0197-0
- Bochkovskiy A, Wang CY, Liao HYM. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint. 2020 Apr;arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934
- Hao W, Zhili S. Improved mosaic: algorithms for more complex images. Journal of Physics: Conference Series. 2020 Nov; 1684(1):012094. https://doi.org/10.1088/1742-6596/1684/1/012094