DOI QR코드

DOI QR Code

An Experimental Study on Development of EMP Shielding Concrete Using Carbon-Based Materials and Industrial By-Products

카본계 재료 및 산업부산물을 활용한 EMP 차폐 콘크리트 개발에 관한 실험적 연구

  • 김민성 (성신양회(주) 기술연구소) ;
  • 윤철현 (성신양회(주) 기술연구소 ) ;
  • 변승호 (성신양회(주) 기술연구소 ) ;
  • 민태범 (한국골재산업연구원)
  • Received : 2023.01.16
  • Accepted : 2023.01.27
  • Published : 2023.03.30

Abstract

In this research, The basic physical properties and EMP shielding performance by thickness were evaluated for optimum composition of EMP shield concrete that can be applied on-site by mixing carbon-based materials with high conductivity into concrete that uses electric furnace oxidized slag (EOS). As a result of the evaluation, it was confirmed that the slump decreased as the amount of mixed carbon fib er (CF) increased, and increased when milled carb on (MCF) was mixed. As for the compressive strength, it was confirmed that EOS enhanced the strength compared to NA, and it was confirmed that the strength decreased when CF and MCF were mixed. As the thickness of the EMP shielding measurement increases, the shielding rate increases, and it was confirmed that the type of conductive material and the thickness of the test specimen have a greater influence on the shielding rate than the Amount of conductive material added. As a result of a comparative evaluation, EOS CF 0.2 is considered suitable for EMP shield concrete formulation.

본 연구에서는 금속성분을 다량 함유한 전기로산화슬래그(EOS)를 골재로 활용한 콘크리트에 도전성이 높은 카본계 재료를 혼입하여 현장적용이 가능한 EMP 차폐 콘크리트의 최적배합을 도출하고자 기초적인 물성과 두께별 EMP 차폐성능을 평가하였다. 평가결과 슬럼프는 카본섬유(CF)의 혼입량이 증가할수록 저하, 밀드카본(MCF) 혼입시 증가하는 것을 확인할 수 있었다. 압축강도는 EOS가 NA에 비해 강도를 증진시키는 것을 확인할 수 있었으며, CF 및 MCF 혼입시 강도가 저하되는 것을 확인할 수 있었다. EMP 차폐 측정결과 두께가 증가할수록 차폐율이 증가하였으며, 도전성 재료의 첨가량보다 도전성 재료의 종류 및 시험체의 두께가 차폐율 증가에 영향력이 더 큰 것을 확인할 수 있었다. 종합적으로 비교평가를 진행한 결과 EMP 차폐 콘크리트 배합으로 EOS CF 0.2가 적합한 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업(과제번호 : 22SCIP-C146649-05)의 연구비 지원에 의해 수행되었습니다.

References

  1. Choi, H.J., Park, J.H., Min, T.B., Jang, H.O., Lee, H.S. (2019). An experimental study on the evaluation of EMP shielding performance of concrete applied with ATMSM using Zn-Al alloy wire, Journal of the Korea Institute of Building Construction, 19(3), 209-217 [in Korean]. https://doi.org/10.5345/JKIBC.2019.19.3.209
  2. Chun, C.S. (2016). North Korean nuclear crisis after the fifth nuclear test and South Korea's future strategy, The Journal of Strategic Studies, 23(3), 7-38 [in Korean].
  3. Dehghani, A., Aslani, F. (2020). The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of self-compacting cementitious composites, Cement and Concrete Composites, 112, 103659.
  4. Donnini, J., Bellezze, T., Corinaldesi, V. (2018). Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers, Journal of Building Engineering, 20, 8-14. https://doi.org/10.1016/j.jobe.2018.06.011
  5. Faleschini, F., Brunelli, K., Zanini, M.A., Dabala, M., Pellegrino, C. (2016). Electric arc furnace slag as coarse recycled aggregate for concrete production, Journal of Sustainable Metallurgy, 2, 44-50. https://doi.org/10.1007/s40831-015-0029-1
  6. Gu, B.Y., Park, S.H. (2022). Duality of Kim Jong Un's nuclear strategy:assured retaliation posture and bluffing strategy, Korean Unification Studies, 26(2), 157-198 [in Korean].
  7. Guan, H., Liu, S., Duan, Y., Cheng, J. (2006). Cement based electromagnetic shielding and absorbing building materials, Cement and Concrete Composites, 28(5), 468-474. https://doi.org/10.1016/j.cemconcomp.2005.12.004
  8. Jung, J.S., Cho, H., Hong, S.H., Han, K.S. (2020). A study on factors influencing the establishment of EMP countermeasure system, Journal of The Korea Society of Information Technology Policy & Management, 12(5), 2043-2049 [in Korean].
  9. Kim, H.G., Lee, H.K. (2008). Development of electromagnetic wave absorbing/shielding construction materials, Magazine of the Korea Concrete Institute, 20(6), 70-74 [in Korean]. https://doi.org/10.22636/MKCI.2008.20.6.70
  10. Kim, Y.J., Yi, C.K. (2015). The UHF wave shielding effectiveness of mortar with conductive inclusions, Journal of the Architectural Institute of Korea Structure & Construction, 31(4), 103-110 [in Korean]. https://doi.org/10.5659/JAIK_SC.2015.31.4.103
  11. Lee, W.G. (2013). EMP protecting measurements and required technology, The Proceedings of the Korea Electromagnetic Engineering Society, 24(1), 79-96 [in Korean].
  12. Li, X., Qu, Y., Wang, X., Bian, H., Wu, W., Dai, H. (2022). Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding, Materials & Design, 213, 110296.
  13. Min, T.B., Cho, H.K. (2021). An experimental study on the development of EMP shielding concrete using electric furnace oxidized slag aggregate, Journal of the Korean Recycled Construction Resources Institute, 9(4), 514-520 [in Korean]. https://doi.org/10.14190/JRCR.2021.9.4.514
  14. Ozturk, M., Chung, D.D.L. (2021). Enhancing the electromagnetic interference shielding effectiveness of carbon-fiber reinforced cement paste by coating the carbon fiber with nickel, Journal of Building Engineering, 41, 102757.
  15. Safiuddin, M., Yakhlaf, M., Soudki, K.A. (2018). Key mechanical properties and microstructure of carbon fibre reinforced self-consolidating concrete, Construction and building materials, 164, 477-488. https://doi.org/10.1016/j.conbuildmat.2017.12.172
  16. Seo, M.J., Chi, S.W., Kim, Y.J., Park, W.C., Kang, H.J., Huh, C.S. (2014). Electromagnetic wave shielding effectiveness measurement method of EMP protection facility, The Journal of Korean Institute of Electromagnetic Engineering and Science, 25(5), 548-558 [in Korean]. https://doi.org/10.5515/KJKIEES.2014.25.5.548
  17. Shurenkov, V.V., Pershenkov, V.S. (2016). Electromagnetic pulse effects and damage mechanism on the semiconductor electronics. Facta Universitatis, Series: Electronics and Energetics, 29(4), 621-629. https://doi.org/10.2298/FUEE1604621S
  18. Song, W., Yi, J., Wu, H., He, X., Song, Q, Yin, J. (2019). Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag, Journal of Cleaner Production, 238, 117819.
  19. Sosa, I., Thomas, C., Polanco, J.A., Setien, J., Sainz-Aja, J.A., Tamayo, P. (2022). Durability of high-performance self-compacted concrete using electric arc furnace slag aggregate and cupola slag powder, Cement and Concrete Composites, 127, 104399.
  20. Suh, B.H., An, S.Y. (2022). The pattern and characteristics of the 10 years Kim Jong-un regime's nuclear policy: focused on the strategic triangle between North Korea-South Korea-the united states, Discourse201, 25(3), 73-102 [in Korean].
  21. Yan, A., Liu, Y., Wu, Z., Gan, X., Li, F., Tao, J., Li, C., Yi, J. (2022). RGO reinforced Cu foam with enhanced mechanical and electromagnetic shielding properties, Journal of Materials Research and Technology, 21, 2965-2965. https://doi.org/10.1016/j.jmrt.2022.10.119