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UNIQUENESS OF q-SHIFT DIFFERENCE-DIFFERENTIAL

POLYNOMIAL OF MEROMORPHIC AND ENTIRE

FUNCTION WITH ZERO-ORDER

V. NAGARJUN, V. HUSNA∗ AND VEENA

Abstract. In this article, we investigate the uniqueness problem of q-shift
difference polynomial of meromorphic (entire) function with zero-order.

Consequently, we prove three results with significantly generalize the results

of Goutam Haldar.
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1. Introduction

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. For some a ∈ C∪{∞}, if the zero of f − a and g− a have the
same locations as well as same multiplicities, we say that f and g share the value
a CM (counting multiplicities). If we do not consider the multiplicities, then f
and g are said to share the value a IM (ignoring multiplicities). Throughout the
paper the elemental and standard notations of Nevanlinna’s Value Distribution
Theory of meromorphic functions which are discussed in [16] have been adopted.
A meromorphic function a is said to be a small with respect to f provided that
T (r, a) = S(r, f), that is T (r, a) = o{T (r, f)} as r → ∞, outside of a possible
exceptional set of finite linear measure. Also, we use I to denote any set of
infinite linear measure of 0 < r < ∞. If α ≡ α(z) is a small function, we define
that f and g share α CM (IM) according as f − α and g − α share 0 CM (IM).
The polynomial Q(ω) of degree n+m defined by

Q(ω) = a∗m+nω
m+n + . . .+ a∗1z + a∗0 = a∗m+n

s∏
j=1

(ω − ωpj )
pj , (1)
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where a∗j ∈ C, (j = 0, 1, . . . , n + m) with a∗m+n ̸= 0, and ωpj
are distinct

complex numbers, and 2 ≤ s ≤ n + m, p1, p2, . . . , ps, s ≥ 2, n, m are any
non-negative integers satisfying p1 + p2 + . . . + ps = n + m. We also suppose
that p > max

p ̸=pj , j=1, 2,...,s−1
{pj}.

Let P(ω1) = a∗n+m

s−1∏
j=1

(ω1 + ωp − ωpj
)pj = aqω

q
1 + aq−1ω

q−1
1 + . . . + a1ω1 + a0,

where a∗m+n = aq, ω1 = ω − ωp, q = n+m− p. Thus, we see that

Q(ω) = ωp
1P(ω1)

where P(ω1) = aqω
q
1 + aq−1ω

q−1
1 + . . . + a0 is a polynomial of degree q such

that p + q = n +m and hence for a meromorphic function f and f1 satisfying
f = f1 + ωp, we have

Q(f) = fp
1P(f1) (2)

Suppose c be a non-zero complex constant. We define the shift of f(z) by f(z+c)
and define the difference operators by

∆cf(z) = f(z + c)− f(z),

∆n
c f(z) = ∆n−1

c (∆cf(z)), n ∈ N, n ≥ 2.

We recall a linear difference polynomial L(z, f) of f which is introduced in [18]
as

L(z, f) = btf(z + ct) + . . .+ b1f(z + c1) + b0f(z + c0),

where bt( ̸= 0), . . . , b1, b0; ct, . . . c1, c0 are complex constants and t be a positive
integer. It can be seen that ∆cf is a particular form of Lcf = c1f(z+c)+c0f(z)
(see [19]). In fact Lcf and ∆n

c f(z) are particular form of L(z, f). We define a
linear q-shift difference polynomial as follows,

L(z, f) = btf(qz + ct) + . . .+ b1f(qz + c1) + b0f(qz + c0). (3)

For s ∈ N, let us define

χb0 =

{
1, if b0 ̸= 0

0, if b0 = 0.

Let P (z) = amzm + am−1z
m−1 + . . .+ a0 be a non-zero polynomial of degree n,

where am( ̸= 0), am−1, . . . , a0 are complex constants and m is a positive integer.
Let m1 be the number of distinct simple zeros and m2 be the number of distinct
multiple zeros of P (z). Let Γ0 = m1 + 2m2 and Γ1 = m1 +m2.

In 2021, Goutam Haldar [20] proved the following results.

Theorem 1.1. (see [20]) Let f be transcendental meromorphic (resp. entire)
function of zero order, and s (̸= 0), k be non-negative integers. If m > Γ1 +
km2 + 2s+ (1 + s)χ

b0
+ 2 (resp. n > Γ1 + km2), then (P(f)L(z, f)s)(k) − α(z)

has infinitely many zeros, where α(z) ∈ S(f)− {0}.
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Theorem 1.2. [20] Let f and g be two transcendental entire functions of zero
order and n be a positive integer such that n ≥ m+5. Let fnP (f)L(z, f)− p(z)
and gnP (g)L(z, g)− p(z) share (0,2), where p(z) be a non-zero polynomial such
that deg(p) < n−1

2 and g(z), g(qz + c) share 0 CM. Then one of the following

conclusions can be realized. (i) f ≡ tg where t is a constant satisfying td =
1, where d = GCD{n + m + 1, n + m, . . . , n + 1} and aq−j ̸= 0 for some
j = 0, 1, . . . ,m.(ii) f and g satisfy the algebraic equation A(x, y) = 0, where
A(ω1, ω2) = ωn

1 (amωm
1 + . . .+ a0)L(z, ω1)− ωn

2 (amωm
2 + . . .+ a0L(z, ω2).

Theorem 1.3. [20] Let f , g be two transccendental entire functions of zero
order. If El(1; (P (f)L(z, f))(k)) = El(1; (P (g)g(qz + c))(k)) and l, m, n are
integers satisfying one of the following conditions.
(i) l ≥ 2, m > 2Γ0 + 2km2 + 1;
(ii) l = 1, m > 1

2 (Γ1 + 4Γ0 + 5km2 + 3);
(iii) l = 0, m > 3Γ1 + 2Γ0 + 5km2 + 4, then one of the following results holds.
(i) f ≡ tg for a constant t such that td = 1, where d = GCD{λ0, λ1, . . . , λm}.
(ii) f and g satisfy the algebraic equation A(ω1, ω2) = 0 where A(ω1, ω2) =
P (ω1)L(z, ω1)− P (ω2)L(z, ω2).

2. Definitions

In 2009, Lahiri [14] introduced a gradation of sharing of values or sets which is
known as weighted sharing. Below we are recalling the notion.

Definition 2.1. (see [14]) Let k be a non-negative integer or infinity. For
a ∈ C∪{∞} we denote by Ek(a, f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a, f) = Ek(a, g), we say that f, g share the value a with weight k. We write
f, g share (a, k) to mean that f, g share the value a with weight k. Clearly, if
f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also we
note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

Definition 2.2. (see [12]) Let f and g be non-constant meromorphic functions
such that f and g share the value a IM. Let z0 be an a-point of f with multiplicity
p, an a-point of g with multiplicity q. We denote by NL(r, a; f) the counting

function of those a-points of f and g where p > q, by N
1)
E (r, a; f) the counting

function of those a-points of f and g where p = q = 1 and by N
(2

E (r, a; f)
the counting function of those a-points of f and g where p = q ≥ 2, each
point in these counting functions is counted only once. Similarly, one can define

NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g).

Definition 2.3. (see [14], [7]) Let f, g share a value a IM. Denote byN∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly, we note that
N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).
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Definition 2.4. (see [15]) Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f | ≥ p) denotes the counting function of those a-points of f whose
multiplicities are not less than p.
(ii) N(r, a; f | ≥ p) denotes the reduced counting function of those a-points of f
whose multiplicities are not less than p.
(iii) N(r, a; f | ≤ p) denotes the counting function (reduced counting function)
of those a-points of f whose multiplicities are not greater than p.
(iv) N(r, a; f | ≤ p) denotes the reduced counting function of those a-points of f
whose multiplicities are not greater than p.

3. Lemmas

In this section, we prove some Lemmas which will play an important role in
proving the main results. We denote H by the following function

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G− 1

)
(4)

where F and G are two non-constant meromorphic functions.

Lemma 3.1. (see [2]) Let f be a zero order meromorphic function, and let
c, q ( ̸= 0) ∈ C. Then

m
(
r,
f(qz + c)

f(z)

)
= S(r, f).

Lemma 3.2. (see [4]) Let f be a zero order meromorphic function, and c, q ∈ C.
Then

T (r, f(qz + c)) = T (r, f) + S(r, f).

N(r,∞; f(qz + c)) = N(r,∞; f(z)) + S(r, f).

N(r, 0; f(qz + c)) = N(r, 0; f(z)) + S(r, f).

N(r,∞; f(qz + c)) = N(r,∞; f(z)) + S(r, f).

N(r, 0; f(qz + c)) = N(r, 0; f(z)) + S(r, f).

on a set of logarithmic density 1.

Lemma 3.3. (see [5]) If N(r, 0; f (k)|f ̸= 0) denotes the counting function of
those zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted
according to multiplicity then

N(r, 0; f (k)|f ̸= 0) ≤ kN(r,∞; f) +N(r, 0; f | < k) + kN(r, 0; f | ≥ k) + S(r, f).

Lemma 3.4. (see [6]) Let f be a non-constant meromorphic function and let

R(f) =

n∑
i=0

aif
i

m∑
j=0

bjf
j



Uniqueness of q-shift difference-differential polynomial . . . 251

be an irreducible rational function in f with constant co-efficients {ai} and {bj}
where an ̸= 0 and bm ̸= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f).

where d = max{n,m}.
Lemma 3.5. (see [7]) Let F and G be two non-constant meromorphic functions
satisfying EF (1,m) = EG(1,m), 0 ≤ m < ∞ with H ̸≡ 0, then

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Similar inequality holds for G also.

Lemma 3.6. (see [8]) Let H ≡ 0 and F, G share (∞, 0), then F, G share
(1,∞), (∞,∞).

Lemma 3.7. (see [9]) Suppose F and G share (1,0), (∞, 0). If H ̸≡ 0, then

N(r,∞;H) ≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +N∗(r,∞;F,G)

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, F ) + S(r,G).

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which

are not the zeros of F (F − 1) and N0(r, 0;G
′) is similarly defined.

Lemma 3.8. (see [7]) If two non-constant meromorphic functions F, G share
(1,2) then

N0(r, 0;G
′)+N(r, 1;G| ≥ 2)+N∗(r, 1;F,G) ≤ N(r,∞;G)+N(r, 0;G)+S(r,G),

where N0(r, 0;G
′) is the reduced counting function of those zeros of G′ which

are not the zeros of G(G− 1).

Lemma 3.9. (see [10]) Let f and g be two non-constant meromorphic functions.
Then

N
(
r,∞;

f

g

)
−N

(
r,∞;

g

f

)
= N(r,∞; f) +N(r, 0; g)−N(r,∞; g)−N(r, 0; f).

Lemma 3.10. Let f be a transcendental entire function of zero-order, and let
q ∈ C− {0} and n, s ∈ N. If ϕ(z) = fnP(f)L(z, f)s, then

(n+ p+ q + s)T (r, f) ≤ T (r, ϕ)−N(r, 0;L(z, f)s) + S(r, f).

Proof. Using first fundamental theorem of Nevanlinna and Lemmas 3.1 and 3.9,
we have

(n+ p+ q + s)T (r, f) = m(r, fn+p+sP (f1))

= m
(
r,
ϕ(z)f(z)s

L(z, f)s
)

≤ m(r, ϕ(z)) +m
(
r,

f(z)s

L(z, f)s
)
+ S(r, f)

≤ m(r, ϕ(z)) +N(r, 0; f(z)s)−N(r, 0;L(z, f)s) + S(r, f)

≤ m(r, ϕ(z)) + sT (r, f)−N(r, 0;L(z, f)s) + S(r, f).
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This implies that

(n+ p+ q + s)T (r, f) ≤ T (r, ϕ(z))−N(r, 0;L(z, f)s) + S(r, f).

□

Lemma 3.11. Let f be a transcendental entire function of zero-order, and let
q ∈ C− {0} and n, s ∈ N. If ϕ(z) = P(f)L(z, f)s, then

(p+ q)T (r, f) ≤ T (r, ϕ)−N(r, 0;L(z, f)s) + S(r, f).

Proof. Using first fundamental theorem of Nevanlinna and Lemmas 3.1 and 3.9,
we have

(p+ q + s)T (r, f) = m(r, fp+sP (f1))

≤ m(r, ϕ(z)) + T
(
r,

f(z)s

L(z, f)s
)
−N

(
r,∞;

f(z)s

L(z, f)s
)
+ S(r, f)

≤ m(r, ϕ(z)) + sT (r, f)−N(r, 0;L(z, f)s) + S(r, f).

This implies that

(p+ q)T (r, f) ≤ T (r, ϕ(z))−N(r, 0;L(z, f)s) + S(r, f).

□

Lemma 3.12. (see [11]) Let f be a non-constant meromorphic function and
p, k ∈ N. Then

Np(r, 0; f
(k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f).

Np(r, 0; f
(k)) ≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 3.13. (see [12]) If F, G be two non-constant meromorphic functions
such that they share (1,1). Then

2NL(r, 1;F )+2NL(r, 1;G)+N
(2

E (r, 1;F )−NF>2(r, 1;G) ≤ N(r, 1;G)−N(r, 1;G).

Lemma 3.14. (see [13]) If two non-constant meromorphic functions F, G share
(1,1), then

NF>2(r, 1;G) ≤ 1

2
(N(r, 0;F ) +N(r,∞;F )−N0(r, 0;F

′)) + S(r, F ),

where N0(r, 0;F
′) is the counting function of those zeros of F ′ which are not the

zeros of F (F − 1).

Lemma 3.15. (see [13]) Let F and G be two non-constant meromorphic func-
tions sharing (1,0). Then

NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F )−NF>1(r, 1;G)

−NG>1(r, 1;F ) ≤ N(r, 1;G)−N(r, 1;G).
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Lemma 3.16. (see [13]) If F and G share (1,0), then

NL(r, 1;F ) ≤ N(r, 0;F ) +N(r,∞;F ) + S(r, F ).

NF>1(r, 1;G) ≤ N(r, 0;F ) +N(r,∞;F )−N0(r, 0;F
′) + S(r, F ).

Similar inequality holds for G also.

4. Main results

In the present research article, we are replacing P (f) by P(f) = fp
1P (f1) and

L(z, f) = b1f(qz+c)+b0f(z) by equation (3) and obtained the following results.

Theorem 4.1. Let f be a transcendental meromorphic function (resp. entire)
function of zero order and s (̸= 0), k be a positive integer. If q > Γ1 + km2 +
2s+ χ

b0
(1 + s) + p+ 1 (resp. n > Γ1 + p+ km2) then (P(f)L(z, f)s)(k) − α(z)

has infinitely many zeros where α(z) ∈ S(f)− {0}.

Proof. Suppose F = F
(k)
1 where F1 = P(f)L(z, f)s. Let us first suppose that

f is a transcendental entire function of zero order. On the contrary, we assume
that F −α(z) has finitely many zeros. In view of Lemmas 3.1, 3.11, 3.12 and by
second fundamental theorem of Nevanlinna for small functions we get

(p+ q)T (r, f) ≤ T (r,P(f)L(z, f)s)−N(r, 0;L(z, f)s) + S(r, f)

≤ T (r, F ) +Nk+1(r, 0;P(f)L(z, f)s)−N(r, 0;F )

−N(r, 0;L(z, f)s) + S(r, f)

≤ (p+ Γ1 + km2)T (r, f) + S(r, f).

which is not possible since n ≥ p + Γ1 + km2. Suppose f is a transcendental
meromorphic function of zero order. Now

(p+ q + s)T (r, f) = T (r, fsP(f))

= T

(
r,

F1f
s

L(z, f)s

)
+ S(r, f)

≤ T (r, F1) + 2sT (r, f) + S(r, f).

i.e.,

(p+ q − s)T (r, f) ≤ T (r, F1) + S(r, f)

≤ T (r, F ) +Nk+1(r, 0;P(f)L(z, f)s)−N(r, 0;F ) + S(r, f)

≤ N(r,∞;P(f)L(z, f)s) +Nk+1(r, 0;P(f)L(z, f)s) + S(r, f)

≤ (1 + p+ χ
b0
)N(r,∞; f) + (Γ1 + km2 + p)N(r, 0; f)

+ (1 + χ
b0
)sT (r, f) + S(r, f).

i.e.,
q ≤ (Γ1 + km2 + 2s+ χb0(1 + s) + p+ 1)T (r, f) + S(r, f).

which is not possible since q > Γ1+km2+2s+χ
b0
(1+s)+p+1)T (r, f)+S(r, f).

Hence the proof of the Theorem 4.1. □
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Theorem 4.2. Let f and g be two transcendental entire functions of zero order
and n be a positive integer such that n ≥ p + q + 5. Let fnP(f)L(z, f) − p(z)
and gnP(g)L(z, g)− p(z) share (0,2) where p(z) be a non-zero polynomial such
that deg(p) < n−1

2 and g(z), g(qz + c) share 0 CM. Then one of the following

conclusion holds.m(i) f ≡ tg where t is a constant satisfying td = 1, where
d = GCD(n+m+p+t, . . . , n+p+t) and aq−i ̸= 0 for some i = 0, 1, . . . ,m. (ii)
f and g satisfy algebraic difference equation A(ω1, ω2) = 0, where A(ω1, ω2) =
ωn
1P(ω1)L(z, ω1) = ωn

2P(ω2)L(z, ω2).

Proof. Denote F = fnP(f)L(z,f)
p(z) and G = gnP(g)L(z,g)

p(z) . From the given condition

it follows that F, G share (1,2) except for the zeros of p(z).
Case 1. Let H ̸≡ 0. From (4), we obtain

N(r,∞;H) ≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N0(r, 0;F
′) +N0(r, 0;G

′).
(5)

If z0 be a simple zero of F − 1 such that p(z0) ̸= 0, then z0 is also a simple zero
of G− 1 and hence a zero of H. So

N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (6)

Using (5) and (6), we get

N(r, 1;F ) = N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N(r,∞;H) +N(r, 1;F | ≥ 2) + S(r, f) + S(r, g)

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N0(r, 0;F
′) +N0(r, 0;G

′) +N(r, 1;F | ≥ 2) + S(r, f) + S(r, g).

(7)

Now, by Lemma 3.3 we obtain

N0(r, 0;G
′) +N(r, 1;F | ≥ 2) +N∗(r, 1;F,G) ≤ N(r, 0;G′|G ̸= 0)

≤ N(r, 0;G) + S(r, g).
(8)

Since g(z) and g(qz+ c) share 0 CM, we must have N
(
r,∞; L(z,g)

g

)
= 0. Hence

using (7) and (8) and Lemmas 3.10, 3.12, we get from the second fundamental
theorem of Nevanlinna, we have

(n+ p+ q)T (r, f) ≤ T (r, F )−N(r, 0;L(z, f)) + S(r, f)

≤ N2(r, 0;F ) +N2(r, 0;G)−N(r, 0;L(z, f)) + S(r, f) + S(r, g)

≤ (p+ q + 2)T (r, f) + (p+ q + 2)T (r, g) + S(r, f) + S(r, g).

i.e.,

nT (r, f) ≤ 2T (r, f) + (p+ q + 2)T (r, g) + S(r, f) + S(r, g). (9)
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Since N
(
r,∞; L(z,g)

g

)
= 0, Keeping in view of Lemmas 3.1 and 3.4 we get

(n+ p+ q + 1)T (r, g) = T (r, gn+1P(g))

≤ m
(
r,
gn+1P(g)

G

)
+m(r,G)

≤ T (r,G) +O(log r).

In a similar manner we obtain

(n+ p+ q + 1)T (r, g) ≤ T (r,G) + S(r, g)

≤ N(r, 0;G) +N(r, 1;G)−N0(r, 0;G
′) + S(r, g)

≤ N2(r, 0;G) +N2(r, 1;G) + S(r, f) + S(r, g)

≤ (p+ q + 3)T (r, f) + (p+ q + 2)T (r, g) + S(r, f) + S(r, g).

i.e.,
nT (r, g) ≤ (p+ q + 3)T (r, f) + T (r, g) + S(r, f) + S(r, g). (10)

Combining (9) and (10) we obtain

(n− p− q − 5)T (r, f) + (n− p− q − 3)T (r, g) ≤ S(r, f) + S(r, g),

which contradicts to the fact that n ≥ p+ q + 5.
Case 2. Suppose H ≡ 0. Then by integration we get

1

F − 1
=

A

G− 1
+B. (11)

where A, B are constant with A ̸= 0. From (11) it can be easily seen that F, G
share (1,∞). We now consider following three subcases.
Subcase 2.1. Let B ̸= 0 and A ̸= B. If B = −1, then from (11) we have
F = −A

G−A−1 . Therefore N(r,A + 1;G) = N(r,∞;F ) = N(r, 0; p) = S(r, g). So
in view of Lemma 3.10 and second fundamental theorem of Nevanlinna, we get

(n+ p+ q)T (r, g) ≤ T (r, gnP(g)L(z, g))−N(r, 0;L(z, g)) + S(r, g)

≤ T (r,G)−N(r, 0;L(z, g)) + S(r, g)

≤ N(r, 0;G) +N(r,A+ 1;G)−N(r, 0;L(z, g)) + S(r, g)

≤ (p+ q + 1)T (r, g) + S(r, g).

which is a contradiction since n ≥ p + q + 5. If B ̸= −1, then from (11) we

get F −
(
1 + 1

B

)
= −A

B2

(
G+A−B

B

) . Therefore N
(
r, B−A

B ;G
)
= N(r, 0;P (g)) =

O(log r) = S(r, g). Using Lemmas 3.12, 3.10 and the same argument as used in
the case B = −1 we get a contradiction.
Subcase 2.2. Let B ̸= 0 and A = B. If B = −1, then from (11) we have

fnP(f)L(z, f)gnP(g)L(z, g) ≡ p2(z). (12)

Keeping in view of (12) and deg(p) < n−1
2 , we can say that f and g have zeros.

Since f and g are of zero orders, f and g both must be contants which contradicts
to our assumption. Therefore (12) is not possible. If B ̸= −1 from (11) we have
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1
F = AG

(1+A)G−1 . Hence N
(
r, 1

1+A ;G
)
= N(r, 0;F ) + S(r, f). So in the view of

Lemmas 3.1 and 3.10 and second fundamental theorem of Nevanlinna we get

(n+ p+ q)T (r, g) ≤ T (r, gnP(g)L(z, g))−N(r, 0;L(z, g)) + S(r, g)

≤ N(r, 0;G) +N
(
r,

1

A+ 1
;G
)
−N(r, 0;L(z, g)) + S(r, g)

≤ N(r, 0;G) +N(r, 0;P(g)) +N(r, 0;F ) + S(r, g)

≤ (p+ q + 1)T (r, g) + (p+ q + 2 + χb0)T (r, f) + S(r, g)

Therefore

nT (r, g) ≤ (p+ q + 3 + χ
b0
)T (r, g) + S(r, g)

which is a contradiction since n ≥ p+ q + 5.
Subcase 2.3. Let B = 0, then from (11) we get

F =
G+A− 1

A
. (13)

If A ̸= 1, we obtain N(r, 1−A;G) = N(r, 0;F ). Therefore, we can similarly get
a contradiction as in Subcase 2.2. Hence A = 1 and from (13) we get F ≡ G,
that is

fnP(f)L(z, f) = gnP(g)L(z, g). (14)

Let h = f
g , then

amgn+m+p
t∑

i=1

bigi(qz + ci)

[
hn+m+p

t∑
i=1

hi(qz + ci)− 1

]
+ . . .

+a0g
n+p

t∑
i=1

bigi(qz + ci)

[
hn+p

t∑
i=1

hi(qz + ci)− 1

]
= 0.

Since g is a non-constant we must have td = 1, where d = GCD(n + m + p +
t + . . . + n + p + t) and am−i ̸= 0 for some i = 0, 1, . . . ,m. Hence f = tg for
a constant t such that td = 1, where d is mentioned above. If t is not constant
then f, g satisfy algebraic difference equation A(ω1, ω2) = 0, where

A(ω1, ω2) = ωn
1P(ω1)L(z, ω1)− ωn

2P(ω2)L(z, ω2).

□

Theorem 4.3. Let f and g be any two transcendental entire functions of zero
order. If El(1; (P(f)L(z, f))(k)) = El(1; (P(g)L(z, g))(k)) and l, m, n are three
integers satisfies one of the following conditions.
(i) l ≥ 2; p+ q > 2Γ0 + 2km2 + 3.
(ii) l = 1; p+ q > Γ0 +

Γ1

2 + 3
2km2 + 3.

(iii) l = 0; p+q > 2Γ0+3Γ1+5km2+9 then one of the result holds. (i) f ≡ tg for
a constant t such that td = 1, where d = GCD(p+q+1, . . . , p+q+1−i, . . . , p+1).
(ii) f and g satisfy the algebraic equation R(ω1, ω2) = 0, where R(ω1, ω2) =
P(ω1)L(z, ω1)− P(ω2)L(z, ω2).
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Proof. Let F (z) = (P(f)L(z, f))(k) and G(z) = (P(g)L(z, g))(k). If follows that
F and G share (1, l).
Case 1. Suppose H ̸≡ 0.
(i) Let l ≥ 2. Using Lemma 3.5, 3.7 and 3.8 we get

N(r, 1;F ) = N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N0(r, 0;F
′) +N0(r, 0;G

′)

+ S(r, f) + S(r, g).

(15)

Hence, using (15), Lemmas 3.1, 3.11, 3.12 and from second fundamental theorem
of Nevanlinna we get,

(p+ q)T (r, f) ≤ T (r,P(f)L(z, f))−N(r, 0;L(z, f)) + S(r, f)

≤ N2(r, 0;G) +Nk+2(r, 0;P(f)L(z, f))−N(r, 0;L(z, f))
+ S(r, f) + S(r, g)

≤ Nk+2(r, 0;P(f)L(z, f)) +Nk+2(r, 0;P(g)L(z, g))
−N(r, 0;L(z, f)) + S(r, f) + S(r, g)

≤ (1 +m1 + 2m2 + km2){T (r, f) + T (r, g)}+ T (r, g)

+ S(r, f) + S(r, g).

(16)

Similarly,

(p+q)T (r, f) ≤ (1+m1+2m2+km2){T (r, f)+T (r, g)}+T (r, f)+S(r, f)+S(r, g).
(17)

Combining (16) and (17) we get

(p+q){T (r, f)+T (r, g)} ≤ (2Γ0+2km2+3){T (r, f)+T (r, g)}+S(r, f)+S(r, g).

which is a contradiction as p+ q > 2Γ0 + 2km2 + 3.
(ii) Let l = 1, using Lemmas 3.3, 3.5, 3.7, 3.13 and 3.14 we get

N(r, 1;F ) ≤ N(r, 1;F | = 1) +NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )

≤ N(r, 0;F | ≥ 2) +
1

2
N(r, 0;F ) +N2(r, 0;G) +N0(r, 0;F

′)

+ S(r, f) + S(r, g).

(18)
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Hence using (18), Lemmas 3.1, 3.11, 3.12 and second fundamental theorem of
Nevanlinna we get

(p+ q)T (r, f) ≤ T (r,P(f)L(z, f))−N(r, 0;L(z, f)) + S(r, f)

≤ Nk+2(r, 0;P(f)L(z, f)) + 1

2
N(r, 0;F ) +N2(r, 0;G)

−N(r, 0;L(z, f)) + S(r, f) + S(r, g)

≤ (1 +m1 + 2m2 + km2){T (r, f) + T (r, g)}

+
1

2
(1 +m1 +m2 + km2)T (r, f) + T (r, g) +

1

2
T (r, f)

+ S(r, f) + S(r, g).

(19)

In a similar manner, we get

(p+ q)T (r, f) ≤ (1 +m1 + 2m2 + km2){T (r, f) + T (r, g)}

+
1

2
(1 +m1 +m2 + km2)T (r, g)

+ T (r, f) +
1

2
T (r, g) + S(r, f) + S(r, g).

(20)

Combining (19) and (20) we get

(p+ q){T (r, f) + T (r, g)} ≤
(
Γ0 +

Γ1

2
+

3

2
km2 + 3

)
+ S(r, f) + S(r, g).

which is a contradiction as p+ q > Γ0 +
Γ1

2 + 3
2km2 + 3.

(iii) Let l = 0. Using Lemmas 3.3, 3.5, 3.7, 3.15, 3.16 we get

N(r, 1;F ) ≤ N
1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2

E (r, 1;F )

≤ N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G) +N(r, 0;G) +N0(r, 0;F
′)

+ S(r, f) + S(r, g).

(21)

Hence using (21), Lemmas 3.1, 3.11, 3.12 and second fundamental theorem of
Nevanlinna we obtain

(p+ q)T (r, f) ≤ T (r,P(f)L(z, f))−N(r, 0;L(z, f)) + S(r, f)

≤ Nk+2(r, 0;P(f)L(z, f)) + 2N(r, 0;F ) +N2(r, 0;G) +N(r, 0;G)

−N(r, 0;L(z, f)) + S(r, f) + S(r, g)

≤ (1 +m1 + 2m2 + km2 + 2){T (r, f) + T (r, g)}
+ 2(1 +m1 +m2 + km2)T (r, f)

+ (1 +m1 +m2 + km2)T (r, g) + S(r, f) + S(r, g).

(22)
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Similarly, we get

(p+ q)T (r, g) ≤ 2(1 +m1 + 2m2 + km2 + 2){T (r, f) + T (r, g)}
+ 2(1 +m1 +m2 + km2)T (r, g)

+ (1 +m1 +m2 + km2)T (r, f) + S(r, f) + S(r, g).

(23)

Combining (22) and (23) we obtain

(p+ q){T (r, f) + T (r, g)}
≤ (2Γ0 + 3Γ1 + 5km2 + 9){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

which is a contradiction as p+ q > 2Γ0 + 3Γ1 + 5km2 + 9.
Case 2. Let H ≡ 0. By integration we get

1

F − 1
=

A

G− 1
+B. (24)

where A, B are constants with A ̸= 0. From (24) it can be easily seen that F, G
share (1,∞). We now consider the following subcases.
Subcase 2.1. Let B ̸= 0 and A ̸= B. If B = −1, then from (24), we have
F = −A

G−A−1 . Therefore N(r,A+1;G) = N(r,∞;F ) = S(r, f). Therefore, using
Lemma 3.11 and second fundamental theorem of Nevanlinna we get,

(p+ q)T (r, g) ≤ T (r,P(g)L(z, g))−N(r, 0;L(z, g)) + S(r, g)

≤ T (r,G) +Nk+2(r, 0;P(g)L(z, g))−N2(r, 0;G)

−N(r, 0;L(z, g)) + S(r, g)

≤ N(r, 0;G) +N(r,A+ 1;G) +Nk+2(r, 0;P(g))−N2(r, 0;G)

−N(r, 0;L(z, g)) + S(r, g)

≤ (2Γ0 + 2km2 + 2−m2)T (r, g) + S(r, g),

which is a contradiction since p+q > 2Γ0+2km2+2. If B ̸= −1, then from (24),

we have F = (B+1)G−(B−A+1)
BG+(A−B) and therefore, N

(
r, A−B

B ;G
)

= N(r,∞;F ) =

S(r, f). Therefore, in a similar manner as done in the case B = −1, we arrive
at a contradiction.
Subcase 2.2. Let B ̸= 0 and A = B. If B ̸= −1 then from (3.20), we have 1

F =
BG

(B+1)G−1 and therefore N(r, 0;G) = N(r,∞;F ) = S(r, f) and N
(
r, 1

B+1 ;G
)
=

N(r, 0;F ). Therefore using Lemma 3.11 and second fundamental theorem of
Nevanlinna, we get

(p+ q)T (r, g) ≤ T (r,P(g)L(z, g))−N(r, 0;L(z, g)) + S(r, g)

≤ Nk+1(r, 0;P(f)L(z, f)) +Nk+2(r, 0;P(g)) +N(r, 0;L(z, g))
−N(r, 0;L(z, g)) + S(r, g)

≤ (m1 + 2m2 + km2 + 1)T (r, g) + (m1 +m2 + km2 + 2)T (r, f)

+ S(r, f) + S(r, g)
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Similarly,

(p+ q)T (r, f)

≤ (m1 + 2m2 + km2 + 1)T (r, f) + (m1 +m2 + km2 + 2)T (r, g)

+ S(r, f) + S(r, g).

Combining above two inequalities we get

(p+q){T (r, f)+T (r, g)} ≤ (2Γ0+2km2+2−m2){T (r, f)+T (r, g)}+S(r, f)+S(r, g).

which is a contradiction since p + q > 2Γ0 + 2km2 + 2. If B = −1, then (24)
reduces to FG ≡ 1. This implies

(P(f)L(z, f))(k)(P(g)L(z, g))(k) ≡ 1. (25)

Suppose P (z) = 0 has t roots α1, α2, . . . αt with multiplicities u1, u2, . . . , ut.
Then we must have u1 + u2 + . . .+ ut = m. Therefore (4) can be rewritten as

(amfp
1 (f−α1)

u1 . . . (f−αt)
utL(z, f)(k))(amgp1(g−α1)

u1 . . . (g−αt)
utL(z, g)(k)) ≡ 1.

(26)
Since f and g are entire functions, from (26), we can say that α1, α2, . . . αt

are Picard exceptional values of f and g. Since by Picard’s theorem, an entire
function can have atmost one finite exceptional value, all α′

js are equal for 1 ≤
j ≤ t. Let P (z) = am(z − α)m. Therefore (26) reduces to

(amfp
1 (f − α)mL(z, f)(k))(amgp1(g − α)mL(z, g)(k)) ≡ 1. (27)

Equation (27) shows that α is an exceptional value of f and g. Since f is an
entire function of zero order having an exceptional value α, f must be constant,
which is not possible since f is assumed to be transcendental and therefore non-
constant.
Subcase 2.3. Let B = 0. Then (24) reduces to F = G+A−1

A . If A ̸= 1, then

N(r, 1−A;G) = N(r, 0;F ). Proceeding in a similar manner as done in Subcase
2.2. we get a contradiction. Hence A = 1. Therefore F ≡ G. This implies that

(P(f)L(z, f))(k) ≡ (P(g)L(z, g))(k) (28)

Integrating (28) k times, we get

P(f)L(z, f) = P(g)L(z, g) + p1(z), (29)

where p1(z) is a polynomial in z of degree k− 1. Suppose p1(z) ̸≡ 0. Then (29)
can be written as

P(f)L(z, f)
p1(z)

=
P(g)L(z, g)

p1(z)
+ 1. (30)
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Now in Lemmas 3.1, 3.11 and second fundamental theorem, we have

(p+ q)T (r, f) ≤ T (r,P(f)L(z, f))−N(r, 0;L(z, f)) + S(r, f)

≤ T

(
r,
P(f)L(z, f)

p1(z)

)
−N(r, 0;L(z, f)) + S(r, f)

≤ N

(
r, 0;

P(f)L(z, f)
p1(z)

)
+N

(
r,∞;

P(f)L(z, f)
p1(z)

)

+N

(
r, 1;

P(f)L(z, f)
p1(z)

)
−N(r, 0;L(z, f)) + S(r, f)

≤ (1 +m1 +m2){T (r, f) + T (r, g)}+ T (r, g) + S(r, f) + S(r, g).

Similarly we obtain

(p+ q)T (r, g) ≤ (1 +m1 +m2){T (r, f) + T (r, g)}+ T (r, f) + S(r, f) + S(r, g).

Combining above two inequalities we get

(p+ q){T (r, f) + T (r, g)} ≤ (2Γ1 + 3){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

which is a contradiction since p+ q > 2Γ0+2km2+2. Hence p1(z) ≡ 0 and (29)
we have

P(f)L(z, f) ≡ P(g)L(z, g). (31)

Set h = f
g . If h is non-constant from (3.27), we can get that f and g satisfy the al-

gebraic equation R(f, g) = 0, where R(ω1, ω2) = P(ω1)L(z, ω1)−P(ω2)L(z, ω2).
If h is a constant, substituting f = gh into (30) we get

[aqg
p+q
1 (hp+q+1 − 1) + . . .+ a0g

p
1(h

p+1 − 1)]L(z, g) = 0.

Then in a similar argument as done in Case 2 in the proof of Theorem 1.1 in
[4], we obtain f ≡ tg for a constant t such that td = 1 where d = GCD(p+ q +
1, . . . , p+ q + 1− i, . . . , p+ 1) and aq−i ̸= 0 for some i = 0, 1, . . . , q. □
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